

MTD-X

CHARACTERISTICS

- Installation by controlled torque
- Use for heavy duty loads.
- Nominal drill bit size is the same as the anchor diameter
- Anchor can be installed through standard fixture holes
- Ring marks for correct embedment depth indication: accurate installation depth
- Washer and nut pre-assembled
- Length ID code stamped on head of each anchor
- Anchor design allows for follow-up expansion after setting under tensile loading
- Code listed under IBC/IRC in accordance with ICC AC193 and ACI 355.2 for cracked and uncracked concrete, and in accordance with ICC AC01 for cracked and uncracked grouted masonry.
- Code listed under NBC in accordance with CSA A23.3-19, Annex D, for cracked and uncracked concrete.
- Qualified for static, wind and seismic loads.
- Available in zinc-plated steel with sherardized clip

APPLICATION

ALLOWABLE TENSION LOADS FOR DEEP EMBEDMENT DEPTH IN 2,500 psi UNCRACKED CONCRETE with α =1,48 [lb]

DRILL HOLE CONDITION

DRY	WET	FLOODED

APPROVALS

FM

APPROVED

- Structural connections, i.e., beam and column anchorage. Safety-related attachments.
- Interior applications / low level corrosion environment.
- Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers.
- Seismic and wind loading.
- Indoor and outdoor structural fixings in concrete
- Safety barriers
- Fixing billboards, boilers, signals, advertising hoardings, etc.
- Installation of sprinkler systems.

ESR-4200 Florida ELC-4200 approval ESR-5412 FL30478 Codes compliance: IBC / IRC 2024, 2021, 2018, 2015, 2013, 2009 and 2006 LABC / LARC 2023 CBC / CRC 2022 FBC 2023

APPLICATIONS EXAMPLES

1.	1. RANGE													
ITEM	CODE	SIZE	РНОТО	COMPONENTS	MATERIAL									
1	MTD-X	1/4" - 3/4"		Bolt Clip Nut Washer	Carbon steel Carbon steel, sherardized EN 13811 ASME B18.2.2 class 2B ASME B18.21.1 type A series N Coating: zinc-plated ≥ 0,0002 in									

2. INSTALLATION DATA IN CONCRETE

Parameter	Symbol	ol Units	Nominal anchor diameter										
runneter	Symbol	Onics	1/4"	3/8"	1/	/2"	5/	/8"	3/	/4"			
ICC approved			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓			
FM certified				\checkmark	✓	\checkmark		\checkmark	\checkmark	✓			
UL certified				\checkmark	✓	✓		\checkmark	✓	✓			
Florida approved				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓			
Outside diameter	do	in (mm)	1/4 (6.4)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)			
Nominal embedment depth	h _{nom}	in (mm)	1.68 (43)	2.33 (59)	2.33 (59)	3.59 (91)	3.23 (82)	4.49 (114)	3.74 (95)	5.26 (134)			
Effective embedment depth	h _{ef}	in (mm)	1 1/2 (38)	2 (51)	2 (51)	3 1/4 (83)	2 3/4 (70)	4 (102)	3 1/4 (83)	4 3/4 (121)			
Minimum hole depth	h _{hole}	in (mm)	2 (51)	2 5/8 (67)	2 5/8 (67)	4 (102)	3 1/2 (89)	4 3/4 (121)	4 (102)	5 3/4 (146)			
Maximum fixture clearance hole dia.	d _f	in (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)	9/16 (14.3)	11/16 (17.5)	11/16 (17.5)	7/8 (22.2)	7/8 (22.2)			
Installation torque	Tinst	ft lbf (Nm)	5 (7)	30 (41)	45 (61)	45 (61)	75 (102)	75 ⁶ (102)	150 (203)	150 (203)			
Minimum concrete thickness	h _{min}	in (mm)	4 (102)	4 (102)	4 (102)	6 (152)	5 1/2 (140)	6 (152)	6 1/2 (165)	6 (152)			
Critical edge distance	Cac	in (mm)	2 3/4 (70)	6 (152)	6 (152)	7 1/2 (191)	7 (178)	8 ½ (216)	9 (229)	12 (305)			
Minimum edge distance (c _{min}) for	Cmin	in (mm) in	1 3/4 (44) 2 1/4	2 1/2 (64) 6 1/2	3 (76) 6	2 1/2 (64) 6	3 1/2 (89) 8	7 (178) 4 1/4	3 1/2 (89) 6	5 (127) 10 1/2			
spacing (s ≥)	s≥	(mm)	(57)	(165)	(152)	(152)	(203)	(108)	(152)	(267)			
Minimum spacing (s _{min}) for edge	Smin	in (mm)	2 1/4 (57)	2 1/2 (64)	2 3/4 (70)	2 1/2 (64)	4 1/2 (114)	4 1/4 (108)	4 (102)	5 (127)			
distance (c ≥)	c≥	in (mm)	1 3/4 (44)	4 (102)	6 (152)	4 (102)	6 (152)	7 (178)	5 (127)	10 1/2 (267)			
Minimum overall anchor length	ℓ_{anc}	in (mm)	2 1/4 (57)	3 (76)	3 1/2 (89)	4 1/2 (114)	4 1/4 (108)	5 1/2 (140)	5 (127)	6 1/2 (165)			
Spanner	Sw	-	7/16	9/16	3	/4	15	/16		1-1/8			

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 Nm.

The embedment depth, h_{nom}, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

Holes in metal fixtures to be mounted should match the diameter specified in the table.

Caution: do not use impact wrench to set or tighten anchor.

Caution: oversized holes in base material will make it difficult to set the anchor and will reduce the anchors' load capacity

Use installation torque 80 ft.lbf for FM applications

Length ID marking on stud	Units	A	В	с	D	E	F	G	н	Т	J	к	L	М	N	0	Ρ	Q
Length of the anchor min ≥	in	1 1/2	2	2 1/2	3	3 1/2	4	4 1/2	5	5 1/2	6	6 1/2	7	7 1/2	8	8 1/2	9	9 1/2
Length of the anchor max <	in	2	2 1/2	3	3 1/2	4	4 1/2	5	5 1/2	6	6 1/2	7	7 1/2	8	8 1/2	9	9 1/2	10

3. PRODUCT INSTALLATION IN CONCRETE

1. DRILLING Drill a hole into the base material of the correct diameter and depth using a drill bit that meets the requirements of ANSI B212.15
2. BLOW AND CLEAN Remove dust and debris from hole using a hand pump, compressed air or a vacuum to remove loose particles left from drilling.
3. INSTALL Position the washer on the anchor and thread on the nut. If installing through a fixture drive the anchor through the fixture into the hole. Be sure the anchor is driven until the corresponding green mark depth is levelled with the base material surface. Use a hammer if necessary.
4. APPLY THE TORQUE Tighten the anchor with a torque wrench by applying the required installation torque, Tins. Note: the threaded stud will draw up during tightening of the nut the expansion wedge (nut) remains in the original position. Once installed, the total length of the anchor may be checked using the letter on the head

4. INSTALLATIO	4. INSTALLATION ACCESSORIES											
Code no.	Description	Box qty.	Image									
МОВОМВА	Hand pump / Dust blower.	1	►]									
MORCEPKIT	Kit 3 cleaning brushes	1	1									

5. DESIGN INFORMATION IN CONCRETE

Tension design information

Decian el	aractoristic	Notation	Units			Nom	inal anch	or diame	ter		
Design cr	naracteristic	Notation	Units	1/4"	3/8"	1/	'2"	5/	'8"	3/	4"
Nominal embedment	depth	h _{nom}	in (mm)	1.68 (43)	2.33 (59)	2.33 (59)	3.59 (91)	3.23 (82)	4.49 (114)	3.74 (95)	5.26 (134)
Anchor category		1, 2 or 3	-	1	1	:	1		1	1	
		STEEL STRENG	TH IN TENSIO	N (ACI 318-	14 17.4.1 or	ACI 318-11	D.5.1)				
Minimum specified u (neck)	ltimate tensile strength	f _{uta}	psi (N/mm²)	113,000 (780)	108,788 (750)		<i>,</i> 878 30)		,526 00)	95,1 (66	
Minimum specified yi	eld strength (neck)	fy	psi (N/mm²)	90.500 (624)	85,000 (585)	,	000 85)		000 60)	77,0 (53	
Effective tensile stres	s area (neck)	A _{se,N}	in² (mm²)	0.0230 (14,8)	0.0562 (36.3)		100 1.5)		160 3.2)	0.2 (153	
Steel strength in tens	ion ³	N _{sa}	lb (kN)	2,599 (11.6)	6,125 (27.2)	,	600 7.2)		240 2.2)	22, (10:	
Safety factor for stee	l strength ⁴	ф _{sa}	-				0.7	5			
		PULLOUT STREN	GTH IN TENS	ION (ACI 31	8-14 17.4.3 (or ACI 318-1	l1 D.5.3)				
haracteristic pullout strength, uncracked oncrete (2,500 psi) ^{6,7}		N _{p,uncr}	lb (kN)	1,575 (7.01)	3,325 (14.79)	3,394 (15.10)	5,723 (25.46)	-	-	-	-
characteristic pullout strength, cracked oncrete (2,500 psi) ^{6,7}		N _{p,cr}	lb (kN)	NA	2,163 (9.62)	-	4,252 (18.91)	-	-	-	-
Characteristic pullout concrete (2,500 psi),		N _{p,eq}	lb (kN)	NA	2,115 (9.41)	-	4,252 (18.91)	-	-	-	-
Normalization	Uncracked concrete	n	-	0.32	0.38	0.39	0.50	0.50	0.50	0.50	0.50
exponent	Cracked concrete	n	-	NA	0.50	0.50	0.46	0.50	0.50	0.50	0.50
Strength reduction fa in tension ⁴	ctor for pullout strength	ф _{сb}	-				0.6	5			
	CONCR	ETE BREAKOUT	STRENGTH IN	TENSION (ACI 318-14 1	7.4.2 or AC	CI 318-11 D.	5.2)			
Effective embedment		h _{ef}	in (mm)	1 1/2 (38)	2 (51)	2 (51)	3 1/4 (83)	2 3/4 (70)	4 (102)	3 1/4 (83)	4 3/4 (121)
Effectiveness factor for	or uncracked concrete9	kuncr	-	24	24	24	24	24	24	27	24
Effectiveness factor f	or cracked concrete ⁹	k _{cr}	-	NA	17	17	17	21	17	21	21
Critical edge distance		Cac	in (mm)	2 3/4 (70)	6 (152)	6 (152)	7 1/2 (191)	7 (178)	8 1/2 (216)	9 (229)	12 (305)
Strength reduction factor for pullout strength n tension ⁴		фр	-				0.6	5			
Axial stiffness in	Uncracked concrete	β _{uncr}	lb/in (kN/mm)	162,306 (28,424)	169,540 (29,690)	296,770 (51,972)	129,020 (22,594)	134,210 (23,503)	88,970 (15,580)	165,900 (29,053)	138,430 (24,242)
service load range ¹⁰	Cracked concrete	β _{cr}	lb/in (kN/mm)	NA	74,240 (13,001)	76,285 (13,359)	52,680 (9,225)	48,940 (8,570)	61,430 (10,758)	75,610 (13,241)	90,400 (15,830)

For SI: 1 inch = 25.4 mm, 1 in² = 645 mm², 1 psi = 0,00689 N/mm²; 1 lb = 0,00445 kN, 1 lbf/in = 0,175 kN/mm

- The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318 D.3.3, as applicable, shall apply.
- 2. Installation must comply with published instructions and details.
- Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design. 3.

All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load 4 combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used.

- MTD-X wedge anchor is considered a ductile steel element in tension as defined by ACI 318-14 2.3 or ACI 318 D.1, as applicable. 5. 6.
- For concrete compressive strength greater than 2,500 psi, N_{pn} = (pullout strength value from table)*(specified concrete compressive strength/2500)ⁿ Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment
- 7. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5 8
- Select appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{ucr}). 9
- Mean values shown; actual stiffness varies considerable depending on concrete strength, loading and geometry of application. 10
- 11
- Anchors are permitted to be used in sand-lightweight concrete provided that N_b, N_{eq} and N_{pn} are multiplied by a factor of 0.60.

Shear design information

Desire shares to sisting	N - 4 - 4 ¹	11			Nom	inal and	hor diame	eter	ter								
Design characteristic	Notation	Units	1/4"	3/8"	1/	2″	5/8	3″	3/4	1 ″							
Nominal embedment depth	h _{nom}	in (mm)	1.68 (43)	2.33 (59)	2.33 (59)	3.59 (91)	3.23 (82)	4.49 (114)	3.74 (95)	5.26 (134)							
Anchor category	1, 2 or 3	-	1	1	1	L	1		1								
	STEEL STRENGT	TH IN SHEAR	(ACI 318-14	17.5.1 or A	CI 318-11 [D.6.1)											
Minimum specified ultimate tensile strength (threads)	f _{uta}	psi (N/mm²)	87,000 (600)	87,000 (600)	87, (60	000 00)	87,0 (60		87,0 (60								
Minimum specified yield strength (threads)	f _v	psi (N/mm²)	69,500 (480)	69,500 (480)		69,500 (480)		00 0)	69,5 (48								
Effective tensile stress area (threads)	A _{se,V}	in ² (mm ²)	0.0318 (20.5)	0.077 (49.7)	0.141 (91.0)	0.141 (91.0)	0.226 (145.8)	0.226 (145.8)	0.334 (215.5)	0.334 (215.5)							
Steel strength in shear ³	Vsa	lb (kN)	974 (4.33)	2,860 (12.7)	4,820 (21.4)	4,820 (21.4)	9,040 (40.2)	9,040 (40.2)	12,300 (54.7)	14,289 (63.5)							
Steel strength in shear, seismic (2500 psi) ⁵	Vsa, eq	lb (kN)	NA	2,720 (12.1)	4,045 (17.9)	4,045 (17.9)	7,700 (34.2)	7,700 (34.2)	8,870 (39.4)	8,870 (39.4)							
Safety factor for steel strength ³	фsa	-				0.	65										
CONC	RETE BREAKOUT	STRENGTH IN	SHEAR (AC	318-14 17.	5.2 or ACI	318-11 D.	6.2)										
Nominal anchor diameter	do	in (mm)	1/4 (6.4)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)							
Load bearing length of anchor	le	in (mm)	1 1/2 (38)	2 (51)	2 (51)	3 1/4 (83)	2 3/4 (70)	4 (102)	3 1/4 (83)	4 3/4 (121)							
Strength reduction factor for concrete strength in shear ⁶	фсь	-				0.	70										
	PRYOUT STRENG	GTH IN SHEAI	R (ACI 318-1	4 17.5.3 or A	ACI 318-11	D.6.3)											
Coefficient for pryout strength	k _{cp}	-	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0							
Effective embedment depth	h _{ef}	in (mm)	1 1/2 (38)	2 (51)	2 (51)	3 1/4 (83)	2 3/4 (70)	4 (102)	3 1/4 (83)	4 3/4 (121)							
Reduction factor for pryout strength in shear ⁶	фср	-				0.	70										

For SI: 1 inch = 25.4 mm, 1 in² = 645 mm², 1 psi = 0,00689 N/mm²; 1 lb = 0,00445 kN

The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable; for anchors 1. resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318 D.3.3 shall apply, as applicable.

Installation must comply with published instructions and details. 2

Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and shall be used for design. 3

MTD-X is considered a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 4.

Reported values for steel strength in shear for seismic applications are based on test results per ACI 355.2, Section 9.6 5.

All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 Section 9.2. If the load 6 combinations of ACI 318-11 Appendix C are used, then the appropriate value of Φ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 Section 9.2 are used.

7. Anchors are permitted to be used in sand-lightweight concrete provided that V_b and V_{cp} are multiplied by a factor of 0.60.

Factored design strength (ΦN_n and ΦV_n) calculated in accordance with ACI 318-14:

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal weight concrete with minimum slab thickness, h_a = h_{min}, and with the following conditions:
 - C_{a1} is greater than or equal to the critical edge distance, C_{ac} (table values based on $C_{a1} = C_{ac}$). C_{a2} is greater than or equal to 1.5 times C_{a1} .
- 2- Calculations were performed according to ACI 318-14. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (Φ) were based on ACI 318-14 section 17.3.3 for load combinations. Condition B is assumed. Condition B is applied where supplementary reinforcement is not supplied.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 section 17.6.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14. For other design conditions including seismic considerations please see ACI 318-14.

	Nominal embed. h _{nom} (in.)			I	Minimum	concrete c	ompressiv	e strength			
Nominal anchor		f´ _c = 2,500 psi		f´ _c = 3,000 psi		f′ _c = 4,0	000 psi	f′ _c = 6,000 psi		f´ _c = 8,000 psi	
diameter (in.)		ΦN _n Tension (Ibs.)	ΦV _n Shear (Ibs.)	ΦN _n Tension (lbs.)	ΦV _n Shear (lbs.)	ΦN _n Tension (lbs.)	ΦV _n Shear (Ibs.)	ΦN _n Tension (lbs.)	ΦVn Shear (Ibs.)	ΦN _n Tension (lbs.)	ΦV _n Shear (lbs.)
3/8	2.33	1,406	1,683	1,540	1,844	1,778	1,859	2,178	1,859	2,515	1,859
1/2	2.33	1,563	1,683	1,712	1,844	1,977	2,129	2,421	2,607	2,795	3,010
1/2	3.59	2,764	3,133	3,006	3,133	3,431	3,133	4,134	3,133	4,719	3,133
F /0	3.23	3,112	5,876	3,410	5,876	3,937	5,876	4,822	5,876	5,568	5,876
5/8	4.49	4,420	5,876	4,842	5,876	5,591	5,876	6,847	5,876	7,907	5,876
2/4	3.74	3,999	7,995	4,380	7,995	5,058	7,995	6,195	7,995	7,153	7,995
3/4	5.26	7,066	9,282	7,740	9,282	8,937	9,282	10,946	9,282	12,639	9,282
	Color code: Pullou				t Concrete / pryout						

Tension and shear design strengths for MTD-X in cracked concrete

Tension and shear design strengths for MTD-X in uncracked concrete

	Nominal				Minimum	concrete co	ompressive	e strength			
Nominal anchor	Nominal embed.	f´c = 2,5	00 psi	f´c = 3,	f′ _c = 3,000 psi		000 psi	f′ _c = 6,000 psi		f' _c = 8,000 psi	
diameter (in.)	h _{nom} (in.)	ΦN _n Tension (lbs.)	ΦVn Shear (Ibs.)	ΦN _n Tension (lbs.)	ΦVn Shear (Ibs.)	ΦN _n Tension (Ibs.)	ΦVn Shear (Ibs.)	ΦN _n Tension (lbs.)	ΦV _n Shear (Ibs.)	ΦN _n Tension (lbs.)	ΦVn Shear (lbs.)
1/4	1.68	1,024	633	1,085	633	1,190	633	1,355	633	1,485	633
3/8	2.33	2,161	1,859	2,316	1,859	2,584	1,859	3,014	1,859	3,362	1,859
4/2	2.33	2,206	2,376	2,369	2,603	2,650	3,005	3,104	3,133	3,472	3,133
1/2	3.59	3,720	3,133	4,075	3,133	4,705	3,133	5,763	3,133	6,654	3,133
F /0	3.23	3,557	5,876	3,897	5,876	4,499	5,876	5,511	5,876	6,363	5,876
5/8	4.49	6,240	5,876	6,836	5,876	7,893	5,876	9,667	5,876	11,162	5,876
2/4	3.74	5,141	7,995	5,632	7,995	6,503	7,995	7,965	7,995	9,197	7,995
3/4	5.26	8,075	9,282	8,846	9,282	10,214	9,282	12,510	9,282	14,444	9,282
	Color code:		Pullout		Concre	te / pryout		Steel			

06/05/25

Rev: 14

Converted allowable loads for MTD-X

ESR-4200 provides design information for load factor and characteristic resistance (LRFD), however allowable stress design (ASD) is still in use by some users. Translation of LRFD to ASD values is possible, however it is dependent on the levels of dead load and live load. Dead load is defined in the ACI 318 Building Code Requirements for Structural Concrete as "the weights of members, supported structure and permanent attachments that are likely to be present on a structure in service". Live load is defined in ACI 318-14 as "load that is not permanently applied to a structure, but is likely to occur during the service life of the structure (excluding environmental loads)". Examples of live loads are traffic on a walkway and nonpermanent loads associated with usage of a structure. Live load values are stipulated in the building code for various loading conditions and parts of structures.

To facilitate the translation of LRFD characteristic values to ASD values, a scenario of dead load and live load level is used to conservatively address the most common application as follows: 30% dead load; 70% live load. ACI 318-14 Equation (5.3.1b) provides a conversion factor of 1,48 which is divided into the LRFD characteristic resistances and multiplied by a ϕ factor (according to the failure type) to determine an equivalent ASD load.

It is the responsibility of the user to select the appropriate ASD values based on the example loadings shown in this document or alternative dead versus live loading that may be applicable to the specific design.

The ASD values are provided in the following tables for tension and shear for different concrete strengths. Other installation and design provisions in ESR-4200 must be followed.

					Min	imum concrete c	ompressive stre	ngth			
Nominal anchor	Nominal embed.	f´ _c = 2,500 psi		f´ _c = 3,000 psi		f´c = 4,0	000 psi	f′ _c = 6,0	000 psi	f´ _c = 8,000 psi	
diameter (in.)	h _{nom} (in.)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (lb)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (Ib)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (lb)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (Ib)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (Ib)
3/8	2.33	950	1,137	1,041	1,246	1,336	1,256	1,472	1,256	1,699	1,256
1/2	2.33	1,056	1,137	1,157	1,246	1,336	1,438	1,636	1,762	1,889	2,034
1/2	3.59	1,867	2,118	2,031	2,118	2,318	2,118	2,793	2,118	3,189	2,118
5/8	3.23	2,103	3,971	2,304	3,971	2,660	3,971	3,258	3,971	3,762	3,971
5/8	4.49	2,986	3,971	3,272	3,971	3,778	3,971	4,627	3,971	5,342	3,971
3/4	3.74	2,702	5,402	2,960	5,402	3,418	5,402	4,186	5,402	4,883	5,402
3/4	5.26	4,774	6,270	5,230	6,270	6,039	6,270	7,396	6,270	8,540	6,270

Converted allowable loads for MTD-X in cracked concrete

1. Allowable load values are calculated using a conversion factor, α, from factored design strengths.

Tabulated allowable load values assume 30% dead load and 70% live load, with controlling load combination 1,2D + 1,6L. Calculated weighted average for the conversion factor, α = 1,2*(0,3) + 1,6*(0,7) = 1,48.

Converted allowable loads for MTD-X in uncracked concrete

		Minimum concrete compressive strength														
Nominal anchor	Nominal embed.	f′ _c = 2,500 psi		f´c = 3,0	000 psi	f´c = 4,0	000 psi	f′ _c = 6,0	000 psi	f´ _c = 8,000 psi						
diameter (in.)	h _{nom} (in.)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (Ib)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (Ib)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (lb)	T _{allowable ASD} Tension (Ib)	V _{allowable ASD} Shear (lb)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (lb)					
1/4	1.68	692	428	733	428	804	428	915	428	1,004	428					
3/8	2.33	1,460	1,256	1,565	1,256	1,746	1,256	2,037	1,256	2,272	1,256					
1/2	2.33	1,491	1,605	1,600	1,759	1,790	2,031	2,097	2,117	2,346	2,117					
1/2	3.59	2,513	2,117	2,753	2,117	3,179	2,117	3,894	2,117	4,496	2,117					
F /0	3.23	2,403	3,970	2,633	3,970	3,040	3,970	3,723	3,970	4,299	3,970					
5/8	4.49	4,216	3,970	4,619	3,970	5,333	3,970	6,532	3,970	7,542	3,970					
2/4	3.74	3,474	5,402	3,805	5,402	4,394	5,402	5,382	5,402	6,214	5,402					
3/4	5.26	5,456	6,272	5,977	6,272	6,901	6,272	8,452	6,272	9,760	6,272					

1. Allowable load values are calculated using a conversion factor, α, from factored design strengths.

2. Tabulated allowable load values assume 30% dead load and 70% live load, with controlling load combination 1,2D + 1,6L. Calculated weighted average for the conversion factor, α = 1,2*(0,3) + 1,6*(0,7) = 1,48.

Ref. FT MTD-X-en

A PERFECT FIXING

5. INSTALLATION DATA IN GROUTED CMU MASONRY

Parameter	Symbol	Units	Nominal anchor diameter									
Parameter	Symbol	Units	1/4"	1/4" 3/8" 1/2"		5/	8″	3/4"				
ICC approved			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Outside diameter	d ₀	in (mm)	1/4 (6.4)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)		
Nominal embedment depth	h _{nom}	in (mm)	1.68 (43)	2.33 (59)	2.33 (59)	3.59 (91)	3.23 (82)	4.49 (114)	3.74 (95)	5.26 (134)		
Effective embedment depth	h _{ef}	in (mm)	1 1/2 (38)	2 (51)	2 (51)	3 1/4 (83)	2 3/4 (70)	4 (102)	3 1/4 (83)	4 3/4 (121)		
Minimum hole depth	h _{hole}	in (mm)	2 (51)	2 5/8 (67)	2 5/8 (67)	4 (102)	3 1/2 (89)	4 3/4 (121)	4 (102)	5 3/4 (146)		
Maximum fixture clearance hole dia.	df	in (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)	9/16 (14.3)	11/16 (17.5)	11/16 (17.5)	7/8 (22.2)	7/8 (22.2)		
Installation torque	Tinst	ft lbf (Nm)	4 (5)	10 (14)	30 (41)	30 (41)	50 (68)	50 (68)	75 (102)	75 (102)		
Minimum Distance to the Head Joint	CminHJ	in (mm)	2 1/2 (64)	2 1/2 (64)	2 1/2 (64)	2 1/2 (64)	2 1/2 (64)	2 1/2 (64)	2 1/2 (64)	2 1/2 (64)		
Minimum edge distance and	C _{min}	in (mm)	2 (51)	6 1/2 (165)	7 (178)	7 (178)	10 (254)	10 (254)	14 (356)	14 (356)		
spacing, field of wall	Smin	in (mm)	3 (76)	4 (102)	4 (102)	4 (102)	8 (203)	8 (203)	8 (203)	8 (203)		
Minimum edge distance and	Cmin	in (mm)	1 3/4 (44)	2 (51)	3 3/4 (95)	3 3/4 (95)	4 (102)	4 (102)	4 (102)	4 (102)		
spacing, top of wall	Smin	in (mm)	3 3/4 (95)	5 (127)	8 (203)	8 (203)	8 (203)	8 (203)	10 (254)	10 (254)		
Minimum overall anchor length	lanc	in (mm)	2 1/4 (57)	3 (76)	3 1/2 (89)	4 1/2 (114)	4 1/4 (108)	5 1/2 (140)	5 (127)	6 1/2 (165)		
Spanner	SW	-	7/16	9/16	3	/4	15	/16		1-1/8		

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 Nm.

The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

Holes in metal fixtures to be mounted should match the diameter specified in the table.

Caution: do not use impact wrench to set or tighten anchor.

Caution: oversized holes in base material will make it difficult to set the anchor and will reduce the anchors' load capacity

6. PRODUCT INSTALLATION IN GROUTED MASONRY 1. DRILLING Drill a hole into the base material of the correct diameter and depth using a drill bit that meets the requirements of ANSI B212.15 2. BLOW AND CLEAN Remove dust and debris from hole using a hand pump, compressed air or a vacuum to remove loose particles left from drilling. 3. INSTALL Position the washer on the anchor and thread on the nut. If installing through a fixture drive the anchor through the fixture into the hole. Be sure the anchor is driven until the corresponding green mark depth is levelled with the base material surface. Use a hammer if necessary. 4. APPLY THE TORQUE Tighten the anchor with a torque wrench by applying the required installation torque, $T_{\text{ins}}.$ Note: the threaded stud will draw up during tightening of the nut the expansion wedge (nut) remains in the original position. Once installed, the total length of the anchor may be checked using the letter on the head

4. INSTALLATIO	IN ACCESSORIES		
Code no.	Description	Box qty.	
МОВОМВА	Hand pump / Dust blower.	1	M
			1

Kit 3 cleaning brushes

MORCEPKIT

1

Image

9. DESIGN INFORMATION IN GROUTED CMU MASORNY

Tension design information

Docian of	haracteristic	Notation	Units	Nominal anchor diameter							
Design ci	Design characteristic		Units	1/4"	3/8"	1/2"		5/8"		3/4"	
Nominal embedment depth		h _{nom}	in (mm)	1.68 (43)	2.33 (59)	2.33 (59)	3.59 (91)	3.23 (82)	4.49 (114)	3.74 (95)	5.26 (134)
Anchor category		1, 2 or 3	-	2	1	2	2		1	1	L
		STEEL STRENG	TH IN TENSIO	N (ACI 318-	14 17.4.1 or	ACI 318-11	D.5.1)				
Minimum specified u (neck)	ltimate tensile strength	f _{uta}	psi (N/mm²)	113,000 (780)	108,788 (750)	105, (73	,878 30)	101,526 (700)		95,728 (660)	
Minimum specified y	ield strength (neck)	fy	psi (N/mm²)	90,500 (624)	87,023 (585)	84,5 (58	847 35)	81,221 (560)		76,870 (530)	
Effective tensile stres	s area (neck)	A _{se}	in² (mm²)	0.0230 (14,8)	0.0562 (36.3)	0.1 (64		0.160 (103.2)		0.238 (153.5)	
Steel strength in tens	ion ³	Nsa	lb (kN)	2,599 (11.6)	6,125 (27.2)	10, (47			240 2.2)	22, (10	
Safety factor for stee	l strength⁴	фsa	-				0.7	5			
		PULLOUT S	RENGTH IN	TENSION (A	C 01 3.3.2.1	7 and 3.3.2.	18)				
Characteristic pullout masonry	strength, uncracked	N _{p,uncr}	lb (kN)	322 (1.43)	1,123 (4.99)	1,130 (5.03)	1,793 (7.98)	2,667 (11.86)	3,021 (13.44)	2,004 (8.92)	3,881 (17,26
Characteristic pullout strength, cracked masonry		N _{p,cr}	lb (kN)	NA	513 (2,28)	461 (2.05)	732 (3.26)	1,838	2.082	2,004	3,881
Characteristic pullout strength, top of wall		N _{p,top}	lb (kN)	322 (1.43)	901 (4.01)	874 (3.89)	1,793 (7.98)	2,512 (11.17)	2,564 (11.41)	1,621 (7.21)	3,881
Strength reduction factor for pullout strength in tension ⁴		фсь	-	0.55	0.65	0.55	0.55	0.65	0.65	0.65	0.65
	Uncracked masonry	β _{uncr}	lb/in (kN/mm)	95,897 (16,794)	109,433 (19,165)	83,268 (14,582)	51,163 (8,960)	105,229 (18,428)	87,500 (15,324)	171,765 (30,081)	156,48
Axial stiffness in		β _{cr}	lb/in (kN/mm)	NA	26,481	64,565	45160	58,928	70,581	112,735	36,95
service load range ⁶	Cracked masonry				(4,637)	(11,307)	(7,909)	(10,320)	(12,361)	(19,743)	(6,471
	Top of wall	β_{top}	lb/in (kN/mm)	23,608 (4,134)	53,106 (9,300)	72,835 (12,755)	48,774 (8,542)	28,753 (5,035)	29,458 (5,159)	14,498 (2,539)	37,868 (6,632
Coefficient of	Uncracked masonry	Vuncr	%	72	158	55	47	73	30	43	143
variation for axial stiffness in service	Cracked masonry	Vcr	%	NA	59	44	49	54	87	64	23
load range ⁶	Top of wall	ν_{top}	%	99	134	107	82	75	58	55	43
Tension shear inf	ormation										
		STEEL STRENG	TH IN TENSIO	N (ACI 318-	14 17.4.1 or	ACI 318-11	D.5.1)				
Minimum specified ultimate tensile strength (thread)		f _{uta}	psi (N/mm²)				87,0 (60				
Minimum specified y	ield strength (thread)	fy	psi (N/mm²)				69,6 (48)				
			1?	0.0210	0.0775	0.1	410	0.2	260	0.2	245

Minimum specified yield strength (thread)	τ _y	(N/mm²)			(480)	
Effective tensile stress area (thread)	Ase	in² (mm²)	0.0318 (20.5)	0.0775 (50.0)	0.1419 (91.5)	0.2260 (145.8)	0.3345 (215.8)
Steel strength in shear, field of wall	V _{sa}	lb (kN)	828 (3.68)	1,599 (7.11)	2,252 (10.02)	3,519 (15.65)	5,717 (25.43)
Steel strength in shear, top of wall	$V_{sa,top}$	lb (kN)	162 (0.72)	593 (2.64)	1,479 (8.68)	1,446 (6.43)	2,734 (12.16)
Safety factor for steel strength ⁴	фsa	-			0.65	5	

For SI: 1 inch = 25.4 mm, 1 in² = 645 mm², 1 psi = 0,00689 N/mm²; 1 lb = 0,00445 kN, 1 lbf/in = 0,175 kN/mm

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable.

2. Installation must comply with published instructions and details.

3. Tabulated values for steel strength in tension are based on test results per ACI 01 and must be used for design.

4. All values of ϕ were determined from AC 01 section 3.3.2.9

5. MTD-X wedge anchor is considered a ductile steel element in tension as defined by AC 01 Table 2.3.

6. Mean values shown; actual stiffness varies considerable depending on concrete strength, loading and geometry of application.

7. Anchors are permitted to be used in sand-lightweight aggregate and light weight units provided λ_a is taken as 1.0.

Factored design strength (ΦN_n and ΦV_n) calculated in accordance with ACI 318-14:

Tabular values are provided for illustration and are applicable for single anchors installed in fully grouted CMU masonry applications:

Edge distances Ca1 are greater than or equal to the minimum distance to head of join cminHJ, minimum distance to field of wall C_{min} and minimum distance to top of wall C_{min,top} Calculations were performed according to ACI 318-14 and AC 01 section 3.3.

Strength reduction factors (Φ) were based on AC01 section 3.3.2.9.

Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 314-18 section 17.6.

nterpolation is not permitted to be used with the tabular values.

Tension and shear design strengths for MTD-X in masonry

Nominal	Nominal		Uncrack	ed masonry		Creaked		
anchor diameter (in.) (in.)	embed.	Field of	fwall	Тор о	f wall	Cracked masonry		
		ΦNn	ΦVn	ΦNn	ΦVn	ΦNn	ΦVn	
	(in.)	Tension (lb.)	Shear (lb.)	Tension (lb.)	Shear (Ib.)	Tension (lb.)	Shear (lb.)	
1/4	1 5/8	177	538	177	105			
3/8	2.33	730	1.039	585	365	333	1.039	
1/2	2 33	621	1,464	480	912	253	1,464	
1/2	3,59	986	1,464	986	912	403	1,464	
5/8	3,23	1,733	2,287	1,633	892	1,194	2,287	
5/8	4,49	1,963	2,287	1,667	892	1,353	2,287	
2/4	3,74	1,302	3,716	1,053	1,686	1,302	3,716	
3/4	5,26	2,522	3,716	2,522	1,686	2,522	3,716	

Converted allowable loads for MTD-X

ESR-5412 provides design information for load factor and characteristic resistance (LRFD), however allowable stress design (ASD) is still in use by some users. Translation of LRFD to ASD values is possible, however it is dependent on the levels of dead load and live load. Dead load is defined in the ACI 318 Building Code Requirements for Structural Concrete as "the weights of members, supported structure and permanent attachments that are likely to be present on a structure in service". Live load is defined in ACI 318-14 as "load that is not permanently applied to a structure but is likely to occur during the service life of the structure (excluding environmental loads)". Examples of live loads are traffic on a walkway and non-permanent loads associated with usage of a structure. Live load values are stipulated in the building code for various loading conditions and parts of structures.

To facilitate the translation of LRFD characteristic values to ASD values, a scenario of dead load and live load level is used to conservatively address the most common application as follows: 30% dead load; 70% live load. AC 01 Equation (3.4) provides a conversion factor of 1,48 which is divided into the LRFD characteristic resistances and multiplied by a ϕ factor (according to the failure type) to determine an equivalent ASD load.

It is the responsibility of the user to select the appropriate ASD values based on the example loadings shown in this document or alternative dead versus live loading that may be applicable to the specific desian.

The ASD values are provided in the following tables for tension and shear for different concrete strengths. Other installation and design provisions in ESR-5412 must be followed.

Nominal anchor diameter (in.)	Nominal		Uncracke	Creaked mesonry				
	embed.	Field of	f wall	Тор о	f wall	Cracked masonry		
	h _{nom}	ΦNn	ΦVn	ΦNn	ΦVn	ΦNn	ΦVn	
	(in.)	Tension (lb.)	Shear (lb.)	Tension (lb.)	Shear (lb.)	Tension (lb.)	Shear (lb.)	
1/4	1 5/8	120	363	120	71			
3/8	2.33	493	702	396	247	225	396	
1/2	2 33	420	989	324	616	171	989	
	3,59	666	989	666	616	272	989	
5/0	3,23	1,171	1,545	1,103	603	807	1,545	
5/8	4,49	1,327	1,545	1,126	603	914	1,545	
0/4	3,74	880	2,511	712	1,139	880	2,511	
3/4	5,26	1,704	2,511	1,704	1,139	1,704	2,511	

Converted allowable loads for MTD-X in masonry

2 Tabulated allowable load values assume 30% dead load and 70% live load, with controlling load combination 1,2D + 1,6L. Calculated weighted average for the conversion factor, $\alpha = 1,2^{*}(0,3) + 1,6^{*}(0,7) = 1,48$.