





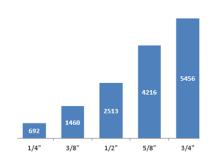
### MTD-X

#### **CARACTERÍSTICAS**

- Instalación por par controlado
- Empleo para altas cargas.
- El tamaño nominal de la broca es el mismo que el diámetro del anclaje
- El anclaje puede instalarse a través de agujeros en el elemento a fijar.
- Marcas para la correcta indicación de la profundidad de instalación: profundidad de instalación exacta.
- Arandela y tuerca pre-montada.
- Código para la identificación de la longitud del anclaje estampado en la cabeza.
- El diseño del anclaje permite un seguimiento de expansión bajo cargas de tracción.
- Lista de códigos según IBC/IRC de acuerdo con ICC AC193 y ACI 355.2 para hormigón fisurado y no fisurado, y de acuerdo con ICC ACO1 para mampostería inyectada fisurada y no fisurada.
- Lista de códigos según NBC de acuerdo con CSA A23.3-19, Anexo D, para hormigón fisurado y no fisurado.
- Empleo para cargas estáticas, sísmicas y de viento.
- Disponible en acero cincado con grapa sherardizada.

**RECOMENDADAS PARA UNA** 

# **APLICACIONES**


Fijaciones estructurales, anclajes para vigas y columnas.

- Accesorios de seguridad.
- Aplicaciones en interior y exterior. Aplicación en zonas de tensión, e.j, bandejas para cables, soporte de tuberías, rociadores contra incendios.

Bandejas de cables, apoyos para tuberías, rociadores antiincendios

- Cargas sísmicas y de viento.
- Fijaciones estructurales en concreto en interiores y/o exteriores.
- Barreras de seguridad.
- Fijación de carteles, maquinaria, calderas, señales, vallas publicitarias, etc.
- Instalación de sistema de riego

**CARGAS MÁXIMAS** PROFUNDIDAD DE INSTALACIÓN **EN 2500 psi EN CONCRETO NO** FISURADO CON α=1,48 [lb]



#### **MATERIAL BASE**



#### **RANGO DE MEDIDAS**

1/4" - 3/4"

#### **CONDICIÓN DE TALADRO**







SECO

**HÚMEDO** 

**INUNDADO** 

#### **HOMOLOGACIONES**







ESR-4200 ELC-4200 ESR-5412

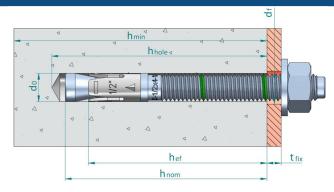
Florida approval FL30478

Codes compliance IBC / IRC 2024, 2021, 2018, 2015 2013, 2009 and 2006 LABC / LARC 2023 CBC / CRC 2022 FBC 2023

## **EJEMPLOS DE APLICACIÓN**








FT MTD-X-mx 21/10/25 1 de 11 Ref. Rev: 15



| 1. ( | SAMA   |             |      |                                    |                                                                                                                                                |
|------|--------|-------------|------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM | CÓDIGO | MEDIDA      | FOTO | COMPONENTES                        | MATERIAL                                                                                                                                       |
| 1    | MTD-X  | 1/4" – 3/4" |      | Eje<br>Grapa<br>Tuerca<br>Arandela | Acero al carbono Acero al carbono, sherardizada EN 13811 ASME B18.2.2 clase 2B ASME B18.21.1 tipo A serie N Recubrimiento: cincado ≥ 0,0002 in |

## 2. DATOS DE INSTALCIÓN EN CONCRETO



| Parámetros                                 | Notación          | Unidades       |               |                |                |                | inal del ancla  |                           |               |                |
|--------------------------------------------|-------------------|----------------|---------------|----------------|----------------|----------------|-----------------|---------------------------|---------------|----------------|
| rarametros                                 | Notacion          |                | 1/4"          | 3/8"           | 1/             | <b>'2</b> "    | 5/              | <b>'8</b> "               |               | <b>/</b> 4"    |
| Aprobación ICC                             |                   |                | $\checkmark$  | ✓              | ✓              | ✓              | ✓               | ✓                         | ✓             | ✓              |
| Certificación FM                           |                   |                |               | $\checkmark$   | $\checkmark$   | $\checkmark$   |                 | $\checkmark$              | $\checkmark$  | ✓              |
| Certificación UL                           |                   |                |               | ✓              | ✓              | ✓              |                 | ✓                         | ✓             | ✓              |
| Aprobación<br>Florida                      |                   |                |               | ✓              | ✓              | ✓              | ✓               | ✓                         | ✓             | ✓              |
| Diámetro de                                | d <sub>0</sub>    | in             | 1/4           | 3/8            | 1/2            | 1/2            | 5/8             | 5/8                       | 3/4           | 3/4            |
| broca                                      |                   | (mm)           | (6.4)         | (9.5)          | (12.7)         | (12.7)         | (15.9)          | (15.9)                    | (19.1)        | (19.1)         |
| Profundidad de                             | h <sub>nom</sub>  | in             | 1.68          | 2.33           | 2.33           | 3.59           | 3.23            | 4.49                      | 3.74          | 5.26           |
| instalación                                |                   | (mm)           | (43)          | (59)           | (59)           | (91)           | (82)            | (114)                     | (95)          | (134)          |
| Profundidad                                | h <sub>ef</sub>   | in             | 1 1/2         | 2              | 2              | 3 1/4          | 2 3/4           | 4                         | 3 1/4         | 4 3/4          |
| efectiva                                   |                   | (mm)           | (38)          | (51)           | (51)           | (83)           | (70)            | (102)                     | (83)          | (121)          |
| Profundidad<br>mínima del<br>agujero       | h <sub>hole</sub> | in<br>(mm)     | 2<br>(51)     | 2 5/8<br>(67)  | 2 5/8<br>(67)  | 4<br>(102)     | 3 1/2<br>(89)   | 4 3/4<br>(121)            | 4<br>(102)    | 5 3/4<br>(146) |
| Máximo diámetro<br>del agujero de<br>placa | df                | in<br>(mm)     | 5/16<br>(7.9) | 7/16<br>(11.1) | 9/16<br>(14.3) | 9/16<br>(14.3) | 11/16<br>(17.5) | 11/16<br>(17.5)           | 7/8<br>(22.2) | 7/8<br>(22.2)  |
| Par de instalación                         | T <sub>inst</sub> | ft lbf<br>(Nm) | 5<br>(7)      | 30<br>(41)     | 45<br>(61)     | 45<br>(61)     | 75<br>(102)     | 75 <sup>1)</sup><br>(102) | 150<br>(203)  | 150<br>(203)   |
| Espesor mínimo                             | h <sub>min</sub>  | in             | 4             | 4              | 4              | 6              | 5 1/2           | 6                         | 6 1/2         | 6              |
| del concreto                               |                   | (mm)           | (102)         | (102)          | (102)          | (152)          | (140)           | (152)                     | (165)         | (152)          |
| Distancia crítica al                       | Cac               | in             | 2 3/4         | 6              | 6              | 7 1/2          | 7               | 8 ½                       | 9             | 12             |
| borde                                      |                   | (mm)           | (70)          | (152)          | (152)          | (191)          | (178)           | (216)                     | (229)         | (305)          |
| Distancia mínima                           | C <sub>min</sub>  | in             | 1 3/4         | 2 1/2          | 3              | 2 1/2          | 3 1/2           | 7                         | 3 1/2         | 5              |
| al borde (c <sub>min</sub> )               |                   | (mm)           | (44)          | (64)           | (76)           | (64)           | (89)            | (178)                     | (89)          | (127)          |
| para una distancia                         | s≥                | in             | 2 1/4         | 6 1/2          | 6              | 6              | 8               | 4 1/4                     | 6             | 10 1/2         |
| entre ejes (s ≥)                           |                   | (mm)           | (57)          | (165)          | (152)          | (152)          | (203)           | (108)                     | (152)         | (267)          |
| Distancia mínima                           | Smin              | in             | 2 1/4         | 2 1/2          | 2 3/4          | 2 1/2          | 4 1/2           | 4 1/4                     | 4             | 5              |
| entre ejes (s <sub>min</sub> )             |                   | (mm)           | (57)          | (64)           | (70)           | (64)           | (114)           | (108)                     | (102)         | (127)          |
| para una distancia                         | c≥                | in             | 1 3/4         | 4              | 6              | 4              | 6               | 7                         | 5             | 10 1/2         |
| al borde (c ≥)                             |                   | (mm)           | (44)          | (102)          | (152)          | (102)          | (152)           | (178)                     | (127)         | (267)          |
| Longitud total                             | <b>ℓ</b> anc      | in             | 2 1/4         | 3              | 3 1/2          | 4 1/2          | 4 1/4           | 5 1/2                     | 5             | 6 1/2          |
| mínima del eje                             |                   | (mm)           | (57)          | (76)           | (89)           | (114)          | (108)           | (140)                     | (127)         | (165)          |
| Espesor máximo                             | t <sub>fix</sub>  | in             | L - 2.10      | L - 2.87       | L - 3.06       | L - 4.32       | L - 4.07        | L - 5.33                  | L - 4.72      | L - 6.24       |
| elemento a fijar <sup>2)</sup>             |                   | (mm)           | (L - 53)      | (L - 73)       | (L - 78)       | (L - 110)      | (L - 103)       | (L - 135)                 | (L - 120)     | (L - 159       |
| Llave                                      | Sw                | _              | 7/16          | 9/16           | 3              | /4             | 15              | /16                       |               | 1-1/8          |

Ref. **FT MTD-X-mx** Rev: 15 **21/10/25 2** de **11** 

## **FICHA TÉCNICA**



Para SI 1 inch = 25.4 mm, 1 ft-lb = 1.356 Nm

La profundidad de anclaje, hnom, se mide desde la cara exterior del concreto hasta el extremo instalado del anclaje antes de aplicar el par de instalación

La longitud total mínima de anclaje corresponde a las medidas de anclajes disponibles en el momento de publicación y en relación con los requerimientos con los mínimos requerimientos de profundidad de anclaje y los posibles accesorios de instalación.

Los agujeros en las placas de anclaje deben coincidir con el diámetro especificado en la tabla.

Cuidado: No utilizar pistola de impacto para instalar los anclajes.

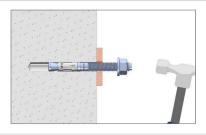
Cuidado: Los agujeros sobredimensionados en el material base dificultarán la instalación del anclaje y reducirán su capacidad de carga.

<sup>2)</sup> L = Longitud total del anclaje

| Identificación de<br>longitud del anclaje | Unidades | D     | E     | F     | G     | н     | ı     | J     | К     | L     | М     | N     | o     | Р     | Q     |
|-------------------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Longitud del anclaje<br>min ≥             | in       | 3     | 3 1/2 | 4     | 4 1/2 | 5     | 5 1/2 | 6     | 6 1/2 | 7     | 7 1/2 | 8     | 8 1/2 | 9     | 9 1/2 |
| Longitud del anclaje<br>max <             | in       | 3 1/2 | 4     | 4 1/2 | 5     | 5 1/2 | 6     | 6 1/2 | 7     | 7 1/2 | 8     | 8 1/2 | 9     | 9 1/2 | 10    |

#### 3. PROCESO DE INSTALACIÓN




#### 1. TALADRAR

Taladrar un agujero en el material base con el diámetro y profundidad correctos y usar una broca que cumpla los requisitos de ANSI B212.15



#### 2. SOPLAR Y LIMPIAR

Limpiar el agujero de restos de polvo y fragmentos usando una bomba, aire comprimido o un aspirador.



#### 3. INSTALAR

Colocar la arandela en el anclaje y roscar la tuerca. Si se necesita fijar un elemento, colocar el anclaje a través del agujero del elemento a fijar y dentro del concreto. Asegurarse de que el anclaje se introduce hasta que la marca verde está a ras del concreto. Utilizar un martillo en caso necesario



#### 4. APLICAR EL PAR DE APRIETE

Utilizar una llave dinamométrica para aplicar el par requerido, T<sub>ins</sub>. Nota: la zona roscada sobresaldrá durante el apriete de la rosca. La rosca permanecerá en su posición inicial. Una vez instalado, la longitud total del anclaje puede mirarse comprobando la letra de la cabeza.

Ref. FT MTD-X-mx Rev: 15 21/10/25 3 de 11

<sup>1)</sup> Usar par de instalación de 80 ft.lbf para aplicaciones FM.



| 4. ACCESORIOS | 4. ACCESORIOS DE INSTALACIÓN     |               |      |  |  |  |  |  |  |  |  |
|---------------|----------------------------------|---------------|------|--|--|--|--|--|--|--|--|
| Código        | Descripción                      | Cantidad/caja | Foto |  |  |  |  |  |  |  |  |
| МОВОМВА       | Bomba manual / Soplador de polvo | 1             |      |  |  |  |  |  |  |  |  |
| MORCEPKIT     | Kit 3 cepillos de limpieza       | 1             | 1    |  |  |  |  |  |  |  |  |

| Información de dis                                  | eño a tracción <sup>1,2</sup> |                   |                                       |                     |                     |                     |                     |                     |                    |                     |                   |
|-----------------------------------------------------|-------------------------------|-------------------|---------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|-------------------|
| Caractorístic                                       | as de diseño                  | Notación          | Unidad                                |                     |                     | Diáme               | tro nomir           | nal del an          | claje              |                     |                   |
| Caracteristic                                       | as de disello                 | NOLACION          | Ullidad                               | 1/4"                | 3/8"                | 1/                  | 2"                  | 5/8"                |                    | 3/4"                |                   |
| Profundidad de instala                              | ción                          | h <sub>nom</sub>  | in<br>(mm)                            | 1.68<br>(43)        | 2.33<br>(59)        | 2.33<br>(59)        | 3.59<br>(91)        | 3.23<br>(82)        | 4.49<br>(114)      | 3.74<br>(95)        | 5.26<br>(134)     |
| Categoría del anclaje                               |                               | 1, 2 o 3          | -                                     | 1                   | 1                   | :                   | 1                   |                     | 1                  | 1                   |                   |
|                                                     | RE                            | SISTENCIA DEL A   | CERO A TRA                            | CCIÓN (ACI          | 318-14 17.4         | .1 o ACI 318        | 3-11 D.5.1)         |                     |                    |                     |                   |
| Mínima resistencia a tr                             | acción (cuello)               | $f_{uta}$         | psi<br>(N/mm²)                        | 113,000<br>(780)    | 108,788<br>(750)    |                     | ,878<br>30)         | 101,526<br>(700)    |                    | 95,1<br>(66         |                   |
| Mínimo límite elástico                              | (cuello)                      | f <sub>y</sub>    | psi<br>(N/mm²)                        | 90.500<br>(624)     | 85,000<br>(585)     |                     | 000<br>85)          |                     | 000<br>50)         | 77,0<br>(53         |                   |
| Área efectiva a tracción (cuello)                   |                               | A <sub>se,N</sub> | in <sup>2</sup><br>(mm <sup>2</sup> ) | 0.0230<br>(14,8)    | 0.0562<br>(36.3)    |                     | L00<br>L.5)         |                     | 160<br>3.2)        | 0.2<br>(153         |                   |
| Resistencia del acero a                             | tracción <sup>3</sup>         | N <sub>sa</sub>   | lb<br>(kN)                            | 2,599<br>(11.6)     | 6,125<br>(27.2)     |                     | 600<br>7.2)         |                     | 240<br>2.2)        | 22,<br>(10:         |                   |
| Coeficiente de segurida                             | ad para el acero4             | фѕа               | -                                     |                     |                     |                     | 0.7                 | 5                   |                    |                     |                   |
|                                                     | RES                           | ISTENCIA POR P    | ULLOUT A TR                           | ACCIÓN (A           | CI 318-14 17        | .4.3 o ACI 3        | 18-11 D.5.3         | 3                   |                    |                     |                   |
| Resistencia característi<br>concreto no fisurado (2 |                               | $N_{p,uncr}$      | lb<br>(kN)                            | 1,575<br>(7.01)     | 3,325<br>(14.79)    | 3,394<br>(15.10)    | 5,723<br>(25.46)    | -                   | -                  | -                   | -                 |
| Resistencia característi<br>concreto fisurado (2,50 | •                             | $N_{p,cr}$        | lb<br>(kN)                            | NA                  | 2,163<br>(9.62)     | -                   | 4,252<br>(18.91)    | -                   | -                  | -                   | -                 |
| Resistencia característi<br>concreto fisurado (2,50 | •                             | $N_{p,eq}$        | lb<br>(kN)                            | NA                  | 2,115<br>(9.41)     | -                   | 4,252<br>(18.91)    | -                   | -                  | -                   | -                 |
| Exponente de                                        | Concreto no fisurado          | n                 | -                                     | 0.32                | 0.38                | 0.39                | 0.50                | 0.50                | 0.50               | 0.50                | 0.50              |
| normalización                                       | Concreto fisurado             | n                 | -                                     | NA                  | 0.50                | 0.50                | 0.46                | 0.50                | 0.50               | 0.50                | 0.50              |
| Factor reductor para la<br>a tracción⁴              | resistencia de pullout        | фсь               | -                                     |                     |                     |                     | 0.6                 | 5                   |                    |                     |                   |
|                                                     | RESISTENC                     | IA DEL CONO DI    | E CONCRETO                            | A A TRACCIO         | ÓN (ACI 318-        | 14 17.4.2 o         | ACI 318-11          | D.5.2)              |                    |                     |                   |
| Profundidad efectiva                                |                               | h <sub>ef</sub>   | in<br>(mm)                            | 1 1/2<br>(38)       | 2<br>(51)           | 2<br>(51)           | 3 1/4<br>(83)       | 2 3/4<br>(70)       | 4<br>(102)         | 3 1/4<br>(83)       | 4 3/4<br>(121)    |
| Factor para concreto n                              | o fisurado <sup>9</sup>       | k <sub>uncr</sub> | -                                     | 24                  | 24                  | 24                  | 24                  | 24                  | 24                 | 27                  | 24                |
| Factor para concreto fi                             | surado <sup>9</sup>           | k <sub>cr</sub>   | -                                     | NA                  | 17                  | 17                  | 17                  | 21                  | 17                 | 21                  | 21                |
| Distancia crítica al borde                          |                               | Cac               | in<br>(mm)                            | 2 3/4<br>(70)       | 6<br>(152)          | 6<br>(152)          | 7 1/2<br>(191)      | 7<br>(178)          | 8 1/2<br>(216)     | 9<br>(229)          | 12<br>(305)       |
| Factor reductor para la<br>a tracción⁴              | resistencia de pullout        | Фр                | -                                     |                     |                     |                     | 0.6                 | 5                   |                    |                     |                   |
| Rigidez axial en cargas                             | Concreto no fisurado          | $eta_{uncr}$      | lb/in<br>(kN/mm)                      | 162,306<br>(28,424) | 169,540<br>(29,690) | 296,770<br>(51,972) | 129,020<br>(22,594) | 134,210<br>(23,503) | 88,970<br>(15,580) | 165,900<br>(29,053) | 138,43<br>(24,242 |
| de trabajo <sup>10</sup>                            | Concreto fisurado             | $eta_{cr}$        | lb/in<br>(kN/mm)                      | NA                  | 74,240<br>(13,001)  | 76,285<br>(13,359)  | 52,680<br>(9,225)   | 48,940<br>(8,570)   | 61,430<br>(10,758) | 75,610<br>(13,241)  | 90,400            |

Ref. **FT MTD-X-mx** Rev: 15 **21/10/25 4** de **11** 

## **FICHA TÉCNICA**



- Para SI: 1 pulgada = 25.4 mm, 1 in<sup>2</sup> = 645 mm<sup>2</sup>, 1 psi = 0,00689 N/mm<sup>2</sup>; 1 lb = 0,00445 kN, 1 lbf/in = 0,175 kN/mm
- 1. Los datos en esta tabla deberían usarse junto con las especificaciones de diseño ACI 318-14 Capítulo 17 o ACI 318 Apéndice D; para anclajes que resistan cargas sísmicas deben aplicarse los requisitos adicionales de ACI 318-14 17.2.3 o ACI 318 D.3.3.
- 2. La instalación debe cumplir las instrucciones y detalles publicados.
- 3. Los valores tabulados para la resistencia del acero a tracción están basados en los resultados de los ensayos por ACI 355.2 y deben usarse para el diseño.
- 4. Todos los valores de φ fueron determinados por la combinación de cargas de IBC Sección 1605.2, ACI 318-14 Sección 5.3 o ACI 318-11 Sección 9.2. Si se utilizan la combinación de cargas de ACI 318-11 Apéndice C, el valor de φ debe determinarse de acuerdo con ACI 318-11 D.4.4. Para el refuerzo que cumple ACI 318-14 Capítulo 17 o ACI 318 Apéndice D, requisitos para Condición A, ver ACI 318-14 17.3.3 o ACI 318-11 D.4.3, para el apropiado φ factor cuando la combinación de cargas de IBC sección 1605.2, ACI 318-14 Sección 5.3 o ACI 318-11 Sección 9.2, se utilizan.
- 5. El anclaje MTD-X es considerado un elemento dúctil de acero a tracción según ACI 318-14 2.3 o ACI 318 D.1
- 6. Para una resistencia a compresión del concreto mayor a 2500 psi N<sub>pn</sub> = (resistencia a extracción de la tabla)\*(resistencia a compresión específica del concreto/2500)<sup>n</sup>
- 7. La resistencia por extracción no determina el diseño del anclaje. No calcular la resistencia a extracción para las profundidades y tamaños indicados.
- 8. Los valores para la resistencia característica a extracción para aplicaciones sísmicas están basados en los resultados de los ensayos de ACI 355.2, Sección 9.5
- 9. Seleccionar el apropiado factor de efectividad para concreto fisurado (k<sub>cr</sub>) o para concreto no fisurado (k<sub>ucr</sub>)
- 10. Los valores medios muestran: la rigidez depende de la resistencia del concreto, la carga y la geometría de la aplicación
- 11. Los anclajes pueden usarse en concreto ligero siempre que  $N_b$ ,  $N_{eq}$  and  $N_{pn}$  sean multiplicados por un factor de 0.60.

| Información de diseño a cortar                                           | nte <sup>1,2</sup> |                                       |                  |                 |                 |                 |                  |                  |                  |                  |
|--------------------------------------------------------------------------|--------------------|---------------------------------------|------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
|                                                                          | N - 4! 4           | l locial and                          |                  |                 | Diámet          | ro nom          | inal del a       | nclaje           |                  |                  |
| Características de diseño                                                | Notación           | Unidad                                | 1/4"             | 3/8"            | 1/              | 2"              | 5/8              | 3"               | 3/4              | <b>1</b> "       |
| Profundidad de instalación                                               | h <sub>nom</sub>   | in<br>(mm)                            | 1.68<br>(43)     | 2.33<br>(59)    | 2.33<br>(59)    | 3.59<br>(91)    | 3.23<br>(82)     | 4.49<br>(114)    | 3.74<br>(95)     | 5.26<br>(134)    |
| Categoría del anclaje                                                    | 1, 2 o 3           | -                                     | 1                | 1               | :               | l               | 1                |                  | 1                |                  |
| RES                                                                      | ISTENCIA DEL AC    | ERO A CORT                            | ANTE (ACI 3      | 18-14 17.5.1    | l o ACI 318     | 3-11 D.6.1      | )                |                  |                  |                  |
| Mínima resistencia a cortante (rosca)                                    | $f_{uta}$          | psi<br>(N/mm²)                        | 87,000<br>(600)  | 87,000<br>(600) | 87,<br>(60      |                 | 87,0<br>(60      |                  | 87,0<br>(60      |                  |
| Mínimo límite elástico (rosca)                                           | f <sub>y</sub>     | psi<br>(N/mm²)                        | 69,500<br>(480)  | 69,500<br>(480) | 69,<br>(48      | 500<br>30)      | 69,5<br>(48      |                  | 69,5<br>(48      |                  |
| Área efectiva a cortante (rosca)                                         | A <sub>se</sub> ,v | in <sup>2</sup><br>(mm <sup>2</sup> ) | 0.0318<br>(20.5) | 0.077<br>(49.7) | 0.141<br>(91.0) | 0.141<br>(91.0) | 0.226<br>(145.8) | 0.226<br>(145.8) | 0.334<br>(215.5) | 0.334<br>(215.5) |
| Resistencia del acero a cortante <sup>3</sup>                            | $V_{sa}$           | lb<br>(kN)                            | 974<br>(4.33)    | 2,860<br>(12.7) | 4,820<br>(21.4) | 4,820<br>(21.4) | 9,040<br>(40.2)  | 9,040<br>(40.2)  | 12,300<br>(54.7) | 14,289<br>(63.5) |
| Resistencia del acero a cortante, sísmica (2500 psi) <sup>5</sup>        | $V_{sa,eq}$        | lb<br>(kN)                            | NA               | 2,720<br>(12.1) | 4,045<br>(17.9) | 4,045<br>(17.9) | 7,700<br>(34.2)  | 7,700<br>(34.2)  | 8,870<br>(39.4)  | 8,870<br>(39.4)  |
| Coeficiente de seguridad del acero <sup>3</sup>                          | фѕа                | -                                     |                  |                 |                 | 0.              | 65               |                  |                  |                  |
| RESIS                                                                    | TENCIA DEL CON     | CRETO A COI                           | RTANTE (AC       |                 | 5.2 o ACI 3     | 18-11 D.6       | .2)              |                  |                  |                  |
| Diámetro nominal del anclaje                                             | do                 | in<br>(mm)                            | 1/4<br>(6.4)     | 3/8<br>(9.5)    | 1/2<br>(12.7)   | 1/2<br>(12.7)   | 5/8<br>(15.9)    | 5/8<br>(15.9)    | 3/4<br>(19.1)    | 3/4<br>(19.1)    |
| Longitud con capacidad de carga                                          | le                 | in<br>(mm)                            | 1 1/2<br>(38)    | 2<br>(51)       | 2<br>(51)       | 3 1/4<br>(83)   | 2 3/4<br>(70)    | 4<br>(102)       | 3 1/4<br>(83)    | 4 3/4<br>(121)   |
| Factor reductor para la resistencia del concreto a cortante <sup>6</sup> | Фсь                | -                                     |                  |                 |                 | 0.              | 70               |                  |                  |                  |
| RES                                                                      | ISTENCIA DE PRY    | OUT A CORT                            | ANTE (ACI 3      | 18-14 17.5.     | 3 o ACI 31      | 8-11 D.6.3      | )                |                  |                  |                  |
| Factor de pryout                                                         | $k_{cp}$           | -                                     | 1.0              | 1.0             | 1.0             | 2.0             | 2.0              | 2.0              | 2.0              | 2.0              |
| Profundidad efectiva                                                     | h <sub>ef</sub>    | in<br>(mm)                            | 1 1/2<br>(38)    | 2<br>(51)       | 2<br>(51)       | 3 1/4<br>(83)   | 2 3/4<br>(70)    | 4<br>(102)       | 3 1/4<br>(83)    | 4 3/4<br>(121)   |
| Factor de reducción de pryout a cortante $\phi_{cp}$ - 0.70              |                    |                                       |                  |                 |                 |                 |                  |                  |                  |                  |

- Para SI: 1 pulgada = 25.4 mm, 1 in<sup>2</sup> = 645 mm<sup>2</sup>, 1 psi = 0,00689 N/mm<sup>2</sup>; 1 lb = 0,00445 kN
- 1. Los datos en esta tabla deberían usarse junto con las especificaciones de diseño ACI 318-14 Capítulo 17 o ACI 318 Apéndice D; para anclajes que resistan cargas sísmicas deben aplicarse los requisitos adicionales de ACI 318-14 17.2.3 o ACI 318 D.3.3.
- 2. La instalación debe cumplir las instrucciones y detalles publicados.
- 3. Los valores para la resistencia del acero a cortante están basados en los resultados de los ensayos por ACI 355.2, Sección 9.4 y deben usarse para el diseño.
- 4. El anclaje MTD-X es considerado un elemento dúctil de acero a tracción según ACI 318-14 2.3 o ACI 318 D.1
- 5. Los valores para la resistencia del acero a cortante para aplicaciones sísmicas están basados en los resultados de los ensayos de ACI 355.2, Sección 9.6
- 6. Todos los valores de φ fueron determinados por la combinación de cargas de IBC Sección 1605.2, ACI 318-14 Sección 5.3 o ACI 318-11 Sección 9.2. Si se utilizan la combinación de cargas de ACI 318-11 Apéndice C, el valor de φ debe determinarse de acuerdo con ACI 318-11 D.4.4. Para el refuerzo que cumple ACI 318-14 Capítulo 17 o ACI 318 Apéndice D, requisitos para Condición A, ver ACI 318-14 17.3.3 o ACI 318-11 D.4.3, para el apropiado φ factor cuando la combinación de cargas de IBC sección 1605.2, ACI 318-14 Sección 5.3 o ACI 318-11 Sección 9.2, se utilizan.
- Los anclajes pueden usarse en concreto ligero siempre que V<sub>b</sub> and V<sub>cp</sub> sean multiplicados por un factor de 0.60.

Ref. FT MTD-X-mx Rev: 15 21/10/25 5 de 11



#### Resistencias de diseño factorizadas (ΦN<sub>n</sub> y ΦV<sub>n</sub>) calculadas de acuerdo con ACI 318-14:

- 1- Los valores tabulares están proporcionados para ilustrar y son aplicables para anclajes individuales instalados en concreto normal con un mínimo espesor, ha=hnom, y con las siguientes condiciones:
  - C<sub>a1</sub> es mayor o igual que la distancia crítica al borde, C<sub>ac</sub> (valores de la tabla basadas en C<sub>a1</sub>=C<sub>ac</sub>)
  - C<sub>a2</sub> es mayor o igual a 1.5 veces C<sub>a1</sub>.
- 2- Los cálculos se realizaron según ACI 318-14. El nivel de carga correspondiente al modo de fallo controlado es mencionado. (A tracción: acero, con del concreto y pullout; A cortante: acero, fallo del concreto y pryout). Asimismo, la resistencia del cono de concreto a tracción y resistencia al pryout a cortante son calculados usando los valores de profundidad efectiva, hef, para los anclajes seleccionados como se indica en las tablas de la información de diseño. Por favor, referenciar también las especificaciones de la instalación para más información.
- 3- Los factores de reducción están basados en ACI 318-14 sección 17.3.3 para combinación de cargas. Se asume la Condición B. La Condición B se aplica cuando no hay refuerzo suplementario.
- 4- Los valores tabulares están permitidos solamente para cargas estáticas, las cargas sísmicas no se consideran en estas tablas.
- 5- Para diseños que incluyen una combinación de tracción y cizalladura, la interacción de las cargas de tracción y cortante deben calcularse de acuerdo con ACI 318-14 sección 17.6.
- 6- No se permite interpolar con los valores tabulares. Para resistencias intermedias de compresión del material base ver ACI 318-14. Para otras condiciones de diseño incluyendo las condiciones sísmicas ver ACI 318-14.

#### Resistencias de diseño a tracción y a cortante para MTD-X en concreto fisurado

|                              |                                                            |                                       |                                       |                                       | Resistencia                           | mínima a co                           | ompresión d                           | el concreto                           |                                       |                                       |                                       |
|------------------------------|------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Diámetro                     | Profundidad de<br>instalación<br>h <sub>nom</sub><br>(in.) | f'c = 2,500 psi                       |                                       | f'c = 3,000 psi                       |                                       | f'c = 4,000 psi                       |                                       | f'c = 6,000 psi                       |                                       | f'c = 8,000 psi                       |                                       |
| nominal del<br>anclaje (in.) |                                                            | ΦN <sub>n</sub><br>Tracción<br>(lbs.) | ΦV <sub>n</sub><br>Cortante<br>(lbs.) | ΦN <sub>n</sub><br>Tracción<br>(lbs.) | ΦV <sub>n</sub><br>Cortante<br>(lbs.) | ΦΝ <sub>n</sub><br>Tracción<br>(lbs.) | ΦV <sub>n</sub><br>Cortante<br>(lbs.) | ΦN <sub>n</sub><br>Tracción<br>(lbs.) | ΦV <sub>n</sub><br>Cortante<br>(lbs.) | ΦN <sub>n</sub><br>Tracción<br>(lbs.) | ΦV <sub>n</sub><br>Cortante<br>(lbs.) |
| 3/8                          | 2.33                                                       | 1,406                                 | 1,683                                 | 1,540                                 | 1,844                                 | 1,778                                 | 1,859                                 | 2,178                                 | 1,859                                 | 2,515                                 | 1,859                                 |
| 1/2                          | 2.33                                                       | 1,563                                 | 1,683                                 | 1,712                                 | 1,844                                 | 1,977                                 | 2,129                                 | 2,421                                 | 2,607                                 | 2,795                                 | 3,010                                 |
| 1/2                          | 3.59                                                       | 2,764                                 | 3,133                                 | 3,006                                 | 3,133                                 | 3,431                                 | 3,133                                 | 4,134                                 | 3,133                                 | 4,719                                 | 3,133                                 |
| 5/8                          | 3.23                                                       | 3,112                                 | 5,876                                 | 3,410                                 | 5,876                                 | 3,937                                 | 5,876                                 | 4,822                                 | 5,876                                 | 5,568                                 | 5,876                                 |
| 5/8                          | 4.49                                                       | 4,420                                 | 5,876                                 | 4,842                                 | 5,876                                 | 5,591                                 | 5,876                                 | 6,847                                 | 5,876                                 | 7,907                                 | 5,876                                 |
| 3/4                          | 3.74                                                       | 3,999                                 | 7,995                                 | 4,380                                 | 7,995                                 | 5,058                                 | 7,995                                 | 6,195                                 | 7,995                                 | 7,153                                 | 7,995                                 |
| 3/4                          | 5.26                                                       | 7,066                                 | 9,282                                 | 7,740                                 | 9,282                                 | 8,937                                 | 9,282                                 | 10,946                                | 9,282                                 | 12,639                                | 9,282                                 |
|                              | Código de color:                                           |                                       | Pullout                               |                                       | Concre                                | eto / pryout                          |                                       |                                       | Acero                                 |                                       |                                       |

#### Resistencias de diseño a tracción y a cortante para MTD-X en concreto no fisurado

|                              |                               | Resistencia mínima a compresión del concreto |                                       |                                       |                                 |                                       |                                       |                                       |                                       |                                       |                                 |  |  |  |
|------------------------------|-------------------------------|----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Diámetro                     | Profundidad de<br>instalación | f'c = 2,5                                    | i00 psi                               | f'c = 3,                              | ,000 psi                        | f'c = 4,000 psi                       |                                       | f'c = 2,500 psi                       |                                       | f'c = 8,000 psi                       |                                 |  |  |  |
| nominal del<br>anclaje (in.) | h <sub>nom</sub><br>(in.)     | ΦN <sub>n</sub><br>Tracción<br>(lbs.)        | ΦV <sub>n</sub><br>Cortante<br>(lbs.) | ΦN <sub>n</sub><br>Tracción<br>(lbs.) | ΦN <sub>n</sub> Cortante (lbs.) | ΦΝ <sub>n</sub><br>Tracción<br>(lbs.) | ΦV <sub>n</sub><br>Cortante<br>(lbs.) | ΦN <sub>n</sub><br>Tracción<br>(lbs.) | ΦV <sub>n</sub><br>Cortante<br>(lbs.) | ΦΝ <sub>n</sub><br>Tracción<br>(lbs.) | ΦN <sub>n</sub> Cortante (lbs.) |  |  |  |
| 1/4                          | 1.68                          | 1,024                                        | 633                                   | 1,085                                 | 633                             | 1,190                                 | 633                                   | 1,355                                 | 633                                   | 1,485                                 | 633                             |  |  |  |
| 3/8                          | 2.33                          | 2,161                                        | 1,859                                 | 2,316                                 | 1,859                           | 2,584                                 | 1,859                                 | 3,014                                 | 1,859                                 | 3,362                                 | 1,859                           |  |  |  |
| 1/2                          | 2.33                          | 2,206                                        | 2,376                                 | 2,369                                 | 2,603                           | 2,650                                 | 3,005                                 | 3,104                                 | 3,133                                 | 3,472                                 | 3,133                           |  |  |  |
| 1/2                          | 3.59                          | 3,720                                        | 3,133                                 | 4,075                                 | 3,133                           | 4,705                                 | 3,133                                 | 5,763                                 | 3,133                                 | 6,654                                 | 3,133                           |  |  |  |
| 5 /O                         | 3.23                          | 3,557                                        | 5,876                                 | 3,897                                 | 5,876                           | 4,499                                 | 5,876                                 | 5,511                                 | 5,876                                 | 6,363                                 | 5,876                           |  |  |  |
| 5/8                          | 4.49                          | 6,240                                        | 5,876                                 | 6,836                                 | 5,876                           | 7,893                                 | 5,876                                 | 9,667                                 | 5,876                                 | 11,162                                | 5,876                           |  |  |  |
| 2/4                          | 3.74                          | 5,141                                        | 7,995                                 | 5,632                                 | 7,995                           | 6,503                                 | 7,995                                 | 7,965                                 | 7,995                                 | 9,197                                 | 7,995                           |  |  |  |
| 3/4                          | 5.26                          | 8,075                                        | 9,282                                 | 8,846                                 | 9,282                           | 10,214                                | 9,282                                 | 12,510                                | 9,282                                 | 14,445                                | 9,282                           |  |  |  |
|                              | Código de color:              |                                              | Pullout                               |                                       | Concr                           | eto / pryout                          |                                       |                                       | Acero                                 |                                       |                                 |  |  |  |

Ref. FT MTD-X-mx Rev: 15 21/10/25 6 de 11



#### Cargas admisibles para MTD-X

Las tablas anteriores muestran información de diseño para factor de carga y la resistencia característica (LRFD), sin embargo, la resistencia de diseño permitida (ASD) se sigue utilizando por algunos usuarios. El paso de valores de LRFD a ASD es posible, pero es dependiente de los niveles de cargas estáticas y dinámicas. Las cargas estáticas se definen en el ACI 318 Building Code Requirements for Structural Concrete como " el peso de los miembros, estructura y elementos que es probable que estén presentes en una estructura en uso". Las cargas dinámicas se definen en el ACI 318 como "cargas que no son aplicadas permanentemente a la estructura, pero son probables que ocurran durante la vida útil de la estructura (excluyendo cargas medioambientales). Ejemplos de cargas dinámicas son tráfico en una acera y cargas no permanentes asociadas al uso de las estructuras. Los valores de las cargas dinámicas están establecidos en el código de edificación para varias condiciones y partes de la estructura.

Para facilitar la conversión de valores característicos de LRFD a valores ASD, se utiliza un escenario en el que existen cargas tanto dinámicas como estáticas para abordar las aplicaciones más comunes: 30% carga estática: 70% carga dinámica. ACI 318-14 Ecuación (5.3.1b) facilita un factor de conversión del 1,48 que se divide por las resistencias características LRFDS y multiplicado por un  $\varphi$  factor (dependiendo del tipo de fallo) para determinar una carga ASD equivalente.

Es la responsabilidad del usuario seleccionar los valores ASD apropiados basados en el ejemplo de cargas mostrado en el documento o en cargas estáticas o dinámicas que pueden ser aplicables en un diseño especifico.

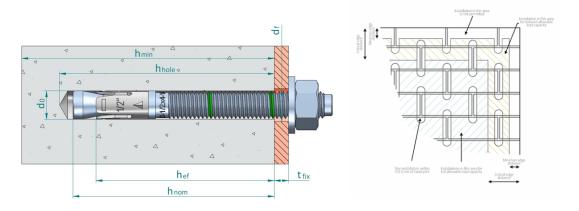
Los valores ASD son facilitados en las siguientes tablas para tracción y cizalladura para diferentes resistencias del concreto. Otras disposiciones de instalación y diseño deben seguirse.

#### Cargas admisibles convertidas para MTD-X en concreto fisurado

|                      |                                       | Resistencia mínima de compresión del concreto |                                          |                                             |                                          |                                             |                                          |                                             |                                          |                                             |                                          |  |  |  |
|----------------------|---------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|--|--|--|
| Diámetro<br>nominal  | Profundidad de                        | ,                                             | 500 psi                                  | f'c = 3,000 psi                             |                                          | f'c = 4,                                    | 000 psi                                  | f'c = 6,0                                   | 000 psi                                  | f'c = 8,000 psi                             |                                          |  |  |  |
| del anclaje<br>(in.) | instalación h <sub>nom</sub><br>(in.) | T <sub>allowable ASD</sub>                    | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub><br>Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub><br>Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub><br>Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub><br>Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) |  |  |  |
| 3/8                  | 2.33                                  | 950                                           | 1,137                                    | 1,041                                       | 1,246                                    | 1,336                                       | 1,256                                    | 1,472                                       | 1,256                                    | 1,699                                       | 1,256                                    |  |  |  |
| 1/2                  | 2.33                                  | 1,056                                         | 1,137                                    | 1,157                                       | 1,246                                    | 1,336                                       | 1,438                                    | 1,636                                       | 1,762                                    | 1,889                                       | 2,034                                    |  |  |  |
| 1/2                  | 3.59                                  | 1,867                                         | 2,117                                    | 2,031                                       | 2,117                                    | 2,318                                       | 2,117                                    | 2,793                                       | 2,117                                    | 3,189                                       | 2,117                                    |  |  |  |
| 5/8                  | 3.23                                  | 2,103                                         | 3,970                                    | 2,304                                       | 3,970                                    | 2,660                                       | 3,970                                    | 3,258                                       | 3,970                                    | 3,762                                       | 3,970                                    |  |  |  |
| 3/6                  | 4.49                                  | 2,986                                         | 3,970                                    | 3,272                                       | 3,970                                    | 3,778                                       | 3,970                                    | 4,627                                       | 3,970                                    | 5,342                                       | 3,970                                    |  |  |  |
| 3/4                  | 3.74                                  | 2,702                                         | 5,402                                    | 2,960                                       | 5,402                                    | 3,418                                       | 5,402                                    | 4,186                                       | 5,402                                    | 4,883                                       | 5,402                                    |  |  |  |
| 5/4                  | 5.26                                  | 4,774                                         | 6,272                                    | 5,230                                       | 6,272                                    | 6,039                                       | 6,272                                    | 7,396                                       | 6,272                                    | 8,540                                       | 6,272                                    |  |  |  |

- 1. Valores de carga permitidos son calculados utilizando un factor de conversión, α, resistencias de diseño.
- 2. Valores tabulados de cargas permitidas asumen 30% de cargas estáticas y 70% de cargas estáticas, con una combinación de cargas controlada 1,2E + 1,6D. Media ponderada calculada para el factor de conversión, α = 1,2\*(0,3) + 1,6\*(0,7) = 1,48.

#### Cargas admisibles convertidas para MTD-X en concreto no fisurado


|                      |                               | Mínima resistencia a compresión del concreto |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |                                          |  |  |  |
|----------------------|-------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--|--|--|
| Diámetro<br>nominal  | Profundidad<br>de instalación | f'c = 2,500 psi                              |                                          | f'c = 3,000 psi                          |                                          | f'c = 4,000 psi                          |                                          | f'c = 6,000 psi                          |                                          | f'c = 8,000 psi                          |                                          |  |  |  |
| del anclaje<br>(in.) | h <sub>nom</sub><br>(in.)     | T <sub>allowable ASD</sub> Tracción (lb)     | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub> Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub> Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub> Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) | T <sub>allowable ASD</sub> Tracción (lb) | V <sub>allowable ASD</sub> Cortante (lb) |  |  |  |
| 1/4                  | 1.68                          | 692                                          | 428                                      | 733                                      | 428                                      | 804                                      | 428                                      | 915                                      | 428                                      | 1,004                                    | 428                                      |  |  |  |
| 3/8                  | 2.33                          | 1,460                                        | 1,256                                    | 1,565                                    | 1,256                                    | 1,746                                    | 1,256                                    | 2,037                                    | 1,256                                    | 2,272                                    | 1,256                                    |  |  |  |
| 1/2                  | 2.33                          | 1,491                                        | 1,605                                    | 1,600                                    | 1,759                                    | 1,790                                    | 2,031                                    | 2,097                                    | 2,117                                    | 2,346                                    | 2,117                                    |  |  |  |
| 1/2                  | 3.59                          | 2,513                                        | 2,117                                    | 2,753                                    | 2,117                                    | 3,179                                    | 2,117                                    | 3,894                                    | 2,117                                    | 4,496                                    | 2,117                                    |  |  |  |
| 5.40                 | 3.23                          | 2,403                                        | 3,970                                    | 2,633                                    | 3,970                                    | 3,040                                    | 3,970                                    | 3,723                                    | 3,970                                    | 4,299                                    | 3,970                                    |  |  |  |
| 5/8                  | 4.49                          | 4,216                                        | 3,970                                    | 4,619                                    | 3,970                                    | 5,333                                    | 3,970                                    | 6,532                                    | 3,970                                    | 7,542                                    | 3,970                                    |  |  |  |
| 2/4                  | 3.74                          | 3,474                                        | 5,402                                    | 3,805                                    | 5,402                                    | 4,394                                    | 5,402                                    | 5,382                                    | 5,402                                    | 6,214                                    | 5,402                                    |  |  |  |
| 3/4                  | 5.26                          | 5,456                                        | 6,272                                    | 5,977                                    | 6,272                                    | 6,901                                    | 6,272                                    | 8,452                                    | 6,272                                    | 9,760                                    | 6,272                                    |  |  |  |

- 1. Valores de carga permitidos son calculados utilizando un factor de conversión, α, resistencias de diseño.
- 2. Valores tabulados de cargas permitidas asumen 30% de cargas estáticas y 70% de cargas estáticas, con una combinación de cargas controlada 1,2E + 1,6D. Media ponderada calculada para el factor de conversión, α = 1,2\*(0,3) + 1,6\*(0,7) = 1,48.

Ref. FT MTD-X-mx Rev: 15 21/10/25 7 de 11



## 6. DATOS DE INSTALACIÓN EN MAMPOSTERÍA



| Parámetro Símbolo Unidades Diámetro nominal del anclaje 1/4" 3/8" 1/2" 5/8" |                    |                |               |                |                |                |                 | •               | 3/4"          |                |
|-----------------------------------------------------------------------------|--------------------|----------------|---------------|----------------|----------------|----------------|-----------------|-----------------|---------------|----------------|
| Aprobación ICC                                                              |                    |                | <u>-/-</u>    | √              | √ ·            | <b>✓</b>       | √ √             | <b>√</b>        | √ ×           | <b>√</b>       |
| Diámetro de broca                                                           | d <sub>0</sub>     | in<br>(mm)     | 1/4<br>(6.4)  | 3/8<br>(9.5)   | 1/2<br>(12.7)  | 1/2<br>(12.7)  | 5/8<br>(15.9)   | 5/8<br>(15.9)   | 3/4<br>(19.1) | 3/4<br>(19.1)  |
| Profundidad de instalación                                                  | h <sub>nom</sub>   | in<br>(mm)     | 1.68<br>(43)  | 2.33<br>(59)   | 2.33<br>(59)   | 3.59<br>(91)   | 3.23<br>(82)    | 4.49<br>(114)   | 3.74<br>(95)  | 5.26<br>(134)  |
| Profundidad<br>efectiva                                                     | h <sub>ef</sub>    | in<br>(mm)     | 1 1/2<br>(38) | 2<br>(51)      | 2<br>(51)      | 3 1/4<br>(83)  | 2 3/4<br>(70)   | 4<br>(102)      | 3 1/4<br>(83) | 4 3/4<br>(121) |
| Profundidad<br>mínima del<br>agujero                                        | h <sub>hole</sub>  | in<br>(mm)     | 2<br>(51)     | 2 5/8<br>(67)  | 2 5/8<br>(67)  | 4<br>(102)     | 3 1/2<br>(89)   | 4 3/4<br>(121)  | 4<br>(102)    | 5 3/4<br>(146) |
| Máximo diámetro<br>del agujero de<br>placa                                  | df                 | in<br>(mm)     | 5/16<br>(7.9) | 7/16<br>(11.1) | 9/16<br>(14.3) | 9/16<br>(14.3) | 11/16<br>(17.5) | 11/16<br>(17.5) | 7/8<br>(22.2) | 7/8<br>(22.2)  |
| Par de instalación                                                          | T <sub>inst</sub>  | ft lbf<br>(Nm) | 4<br>(5)      | 10<br>(14)     | 30<br>(41)     | 30<br>(41)     | 50<br>(68)      | 50<br>(68)      | 75<br>(102)   | 75<br>(102)    |
| Distancia minima<br>a la testa                                              | C <sub>minHJ</sub> | in<br>(mm)     | 2 1/2<br>(64) | 2 1/2<br>(64)  | 2 1/2<br>(64)  | 2 1/2<br>(64)  | 2 1/2<br>(64)   | 2 1/2<br>(64)   | 2 1/2<br>(64) | 2 1/2<br>(64)  |
| Distancia y espacionamiento                                                 | C <sub>min</sub>   | in<br>(mm)     | 2<br>(51)     | 6 1/2<br>(165) | 7<br>(178)     | 7<br>(178)     | 10<br>(254)     | 10<br>(254)     | 14<br>(356)   | 14<br>(356)    |
| mínimo a la soga                                                            | Smin               | in<br>(mm)     | 3<br>(76)     | 4<br>(102)     | 4<br>(102)     | 4<br>(102)     | 8<br>(203)      | 8<br>(203)      | 8<br>(203)    | 8<br>(203)     |
| Distancia y espacionamiento                                                 | C <sub>min</sub>   | in<br>(mm)     | 1 3/4<br>(44) | 2<br>(51)      | 3 3/4<br>(95)  | 3 3/4<br>(95)  | 4<br>(102)      | 4<br>(102)      | 4<br>(102)    | 4<br>(102)     |
| mínimo,<br>coronación del<br>tabique                                        | Smin               | in<br>(mm)     | 3 3/4<br>(95) | 5<br>(127)     | 8<br>(203)     | 8<br>(203)     | 8<br>(203)      | 8<br>(203)      | 10<br>(254)   | 10<br>(254)    |
| Longitud de<br>anclaje total<br>mínima                                      | <b>ℓ</b> anc       | in<br>(mm)     | 2 1/4<br>(57) | 3<br>(76)      | 3 1/2<br>(89)  | 4 1/2<br>(114) | 4 1/4<br>(108)  | 5 1/2<br>(140)  | 5<br>(127)    | 6 1/2<br>(165) |
| Llave                                                                       | sw                 | -              | 7/16          | 9/16           | 3              | /4             | 15              | /16             |               | 1-1/8          |

Para SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 Nm.

La profundidad de anclaje, hnom, se mide desde la cara exterior del concreto hasta el extremo instalado del anclaje antes de aplicar el par de instalación

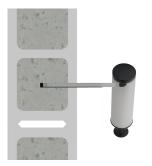
La longitud total mínima de anclaje corresponde a las medidas de anclajes disponibles en el momento de publicación y en relación con los requerimientos con los mínimos requerimientos de profundidad de anclaje y los posibles accesorios de instalación.

Los agujeros en las placas de anclaje deben coincidir con el diámetro especificado en la tabla.

Cuidado: No utilizar pistola de impacto para instalar los anclajes.

Cuidado: Los agujeros sobredimensionados en el material base dificultarán la instalación del anclaje y reducirán su capacidad de carga

Ref. FT MTD-X-mx Rev: 15 21/10/25 8 de 11




## 7. PROCESO DE INSTALACIÓN EN MAMPOSTERÍA



#### 1. TALADRAR

Taladrar a diámetro y profundidad especificados utilizando una broca conforme a los requerimientos de la normativa ANSI B212.15



#### 2. SOPLAR Y LIMPIAR

Limpiar el agujero de restos de polvo y fragmentos del taladrado según indicaciones del gráfico.

Utilizar bomba de aire y cepillo.



#### 3. INSTALACIÓN

Colocar la arandela en el anclaje y roscar la tuerca. Si se necesita fijar un elemento, colocar el anclaje a través del agujero del elemento a fijar y dentro del material base. Asegurarse de que el anclaje se introduce hasta que la marca verde está a ras del material base. Utilizar un martillo en caso necesario



#### 4. APPLY THE TORQUE

Utilizar una llave dinamométrica para aplicar el par requerido, T<sub>ins</sub>. Nota: la zona roscada sobresaldrá durante el apriete de la rosca. La rosca permanecerá en su posición inicial. Una vez instalado, la longitud total del anclaje puede mirarse comprobando la letra de la cabeza.

| 8. ACCESORIOS | 8. ACCESORIOS DE INSTALACIÓN     |               |      |  |  |  |  |  |  |  |  |
|---------------|----------------------------------|---------------|------|--|--|--|--|--|--|--|--|
| Código        | Descripción                      | Cantidad/caja | Foto |  |  |  |  |  |  |  |  |
| МОВОМВА       | Bomba manual / Soplador de polvo | 1             |      |  |  |  |  |  |  |  |  |
| MORCEPKIT     | Kit 3 cepillos de limpieza       | 1             | 1    |  |  |  |  |  |  |  |  |

Ref. **FT MTD-X-mx** Rev: 15 **21/10/25 9** de **11** 



## 9. INFORMACIÓN DE CÁLCULO PARA APLICACIONES EN MAMPOSTERÍA

| Información de cál                                                                | culo a tracción               |                     |                  |                              |                   |                    |                             |                   |                               |                   |                  |
|-----------------------------------------------------------------------------------|-------------------------------|---------------------|------------------|------------------------------|-------------------|--------------------|-----------------------------|-------------------|-------------------------------|-------------------|------------------|
| C                                                                                 |                               | Símbolo             | Unidad           | Diámetro nominal del anclaje |                   |                    |                             |                   |                               |                   |                  |
| Caracteristic                                                                     | as de cálculo                 |                     |                  | 1/4"                         | 3/8"              | 1/2"               |                             | 5/8"              |                               | 3/4"              |                  |
| Profundidad nominal de anclaje                                                    |                               | h <sub>nom</sub>    | in<br>(mm)       | 1.68<br>(43)                 | 2.33<br>(59)      | 2.33<br>(59)       | 3.59<br>(91)                | 3.23<br>(82)      | 4.49<br>(114)                 | 3.74<br>(95)      | 5.26<br>(134)    |
| Categoría de anclaje                                                              |                               | 1, 2 or 3           | -                | 2                            | 1                 | 2                  | 2                           | :                 | 1                             | 1                 |                  |
|                                                                                   | RE                            | ESISTENCIA DEL A    | CERO EN TRA      | CCIÓN (ACI                   | 318-14 17.4       | 1.1 o ACI 31       | 8-11 D.5.1)                 |                   |                               |                   |                  |
| Mínima resistencia a tracción (cuello)                                            |                               | f <sub>uta</sub>    | psi<br>(N/mm²)   | 113,000<br>(780)             | 108,788<br>(750)  |                    | ,878<br>30)                 |                   | ,526<br>00)                   | 95,7<br>(66       |                  |
| Mínimo límite elástico                                                            | (cuello)                      | f <sub>y</sub>      | psi<br>(N/mm²)   | 90,500<br>(624)              | 87,023<br>(585)   |                    | 847<br>35)                  | ,                 | 81,221 76,870<br>(560) (530)  |                   |                  |
| Área efectiva a tracción (cuello)                                                 |                               | Ase                 | in²<br>(mm²)     | 0.0230<br>(14,8)             | 0.0562<br>(36.3)  |                    | .00<br>1.5)                 |                   | 0.160 0.238<br>(103.2) (153.5 |                   |                  |
| Resistencia del acero a tracción <sup>3</sup>                                     |                               | N <sub>sa</sub>     | lb<br>(kN)       | 2,599<br>(11.6)              | 6,125<br>(27.2)   |                    | 10,600 16,240 (47.2) (72.2) |                   | 22,730<br>(101.1)             |                   |                  |
| Coeficiente de segurid                                                            | ad para el acero <sup>4</sup> | фѕа                 | -                |                              |                   |                    | 0.7                         | 5                 |                               |                   |                  |
|                                                                                   |                               | RESISTENCIA DI      | EXTRACCIÓ        | N EN TRACC                   | IÓN (AC 01 3      | 3.3.2.17 y 3.      | .3.2.18)                    |                   |                               |                   |                  |
| Resistencia de extracción para<br>mampostería sin fisurar <sup>6</sup>            |                               | N <sub>p,uncr</sub> | lb<br>(kN)       | 322<br>(1.43)                | 1,123<br>(4.99)   | 1,130<br>(5.03)    | 1,793<br>(7.98)             | 2,667<br>(11.86)  | 3,021<br>(13.44)              | 2,004<br>(8.92)   | 3,881<br>(17,26  |
| Resistencia de extracción para mampostería fisurada <sup>6</sup>                  |                               | N <sub>p,cr</sub>   | lb<br>(kN)       | NA                           | 513<br>(2,28)     | 461<br>(2.05)      | 732<br>(3.26)               | 1,838             | 2.082                         | 2,004             | 3,881            |
| Resistencia de extracción, parte superior de pared                                |                               | N <sub>p,top</sub>  | lb<br>(kN)       | 322<br>(1.43)                | 901<br>(4.01)     | 874<br>(3.89)      | 1,793<br>(7.98)             | 2,512<br>(11.17)  | 2,564                         | 1,621<br>(7.21)   | 3,881            |
| Factor de seguridad para la resistencia a extracción <sup>4</sup>                 |                               | фсь                 | -                | 0.55                         | 0.65              | 0.55               | 0.55                        | 0.65              | 0.65                          | 0.65              | 0.65             |
|                                                                                   | Mampostería no                | $\beta_{uncr}$      | lb/in            | 95,897                       | 109,433           | 83,268             | 51,163                      | 105,229           | 87,500                        | 171,765           | 156,48           |
| Rigidez axial para el                                                             | fisurada                      | Puncr               | (kN/mm)          | (16,794)                     | (19,165)          | (14,582)           | (8,960)                     | (18,428)          | (15,324)                      | (30,081)          | (27.405          |
| rango de cargas de                                                                | En coronación del             | Вст                 | lb/in<br>(kN/mm) | NA                           | 26,481            | 64,565             | 45160                       | 58,928            | 70,581                        | 112,735           | 36,951           |
| servicio. <sup>6</sup>                                                            | tabique                       |                     |                  |                              | (4,637)           | (11,307)           | (7,909)                     | (10,320)          | (12,361)                      | (19,743)          | (6,471           |
|                                                                                   | Mampostería no fisurada       | $\beta_{top}$       | lb/in<br>(kN/mm) | 23,608<br>(4,134)            | 53,106<br>(9,300) | 72,835<br>(12,755) | 48,774<br>(8,542)           | 28,753<br>(5,035) | 29,458<br>(5,159)             | 14,498<br>(2,539) | 37,868<br>(6,632 |
| Factor de seguridad<br>para rigidez axial en<br>el rango de cargas de<br>servicio | Mampostería no fisurada       | Vuncr               | %                | 72                           | 158               | 55                 | 47                          | 73                | 30                            | 43                | 143              |
|                                                                                   | Mampostería<br>fisurada       | $ u_{cr}$           | %                | NA                           | 59                | 44                 | 49                          | 54                | 87                            | 64                | 23               |
|                                                                                   | En coronación del tabique     | Vtop                | %                | 99                           | 134               | 107                | 82                          | 75                | 58                            | 55                | 43               |
| Información de cál                                                                | culo a cortante               |                     |                  |                              |                   |                    |                             |                   |                               |                   |                  |

| F                                                                 | RESISTENCIA DEL     | ACERO A COR                           | TANTE (ACI       | 318-14 17.4.     | 1 o ACI 318-11 D.5.1) |                   |                   |
|-------------------------------------------------------------------|---------------------|---------------------------------------|------------------|------------------|-----------------------|-------------------|-------------------|
| Mínima resistencia a cortante (rosca)                             | f <sub>uta</sub>    | psi<br>(N/mm²)                        |                  |                  | 87,0<br>(600          |                   |                   |
| Mínimo límite elástico (rosca)                                    | fy                  | psi<br>(N/mm²)                        |                  |                  | 69,6<br>(480          |                   |                   |
| Área efectiva a cortante (rosca)                                  | Ase                 | in <sup>2</sup><br>(mm <sup>2</sup> ) | 0.0318<br>(20.5) | 0.0775<br>(50.0) | 0.1419<br>(91.5)      | 0.2260<br>(145.8) | 0.3345<br>(215.8) |
| Resistencia del acero a cortante <sup>3</sup>                     | V <sub>sa</sub>     | lb<br>(kN)                            | 828<br>(3.68)    | 1,599<br>(7.11)  | 2,252<br>(10.02)      | 3,519<br>(15.65)  | 5,717<br>(25.43)  |
| Resistencia del acero a cortante, sísmica (2500 psi) <sup>5</sup> | V <sub>sa,top</sub> | lb<br>(kN)                            | 162<br>(0.72)    | 593<br>(2.64)    | 1,479<br>(8.68)       | 1,446<br>(6.43)   | 2,734<br>(12.16)  |
| Coeficiente de seguridad del acero <sup>3</sup>                   | фѕа                 | -                                     |                  |                  | 0.6                   | 5                 |                   |

Para SI: 1 inch = 25.4 mm, 1 in² = 645 mm², 1 psi = 0,00689 N/mm²; 1 lb = 0,00445 kN, 1 lbf/in = 0,175 kN/mm

- Los datos en esta tabla deberían usarse junto con las especificaciones de diseño ACI 318-14 Capítulo 17 o ACI 318 Apéndice D.
- La instalación debe cumplir las instrucciones y detalles publicados. Los valores tabulados para la resistencia del acero a tracción están basados en los resultados de los ensayos por ACI 355.2 y deben usarse para el diseño
- Todos los valores  $\varphi$  han sido determinados según AC 01 sección 3.3.2.9
- El anclaje MTD-X es considerado un elemento dúctil de acero a tracción según AC 01 Tabla 2.3.
- Valores medios mostrados; la rigidez real varía considerablemente en función de la resistencia del material base, la carga y la geometría de la aplicación.
- Se permite el uso de anclajes en áridos ligeros de arena y unidades ligeras, siempre que  $\lambda a$  se considere igual a 1,0.

FT MTD-X-mx 21/10/25 **10** de **11** Ref. Rev: 15



#### Factored design strength ( $\Phi N_n$ and $\Phi V_n$ ) calculated in accordance with ACI 318-14:

- Los valores tabulados se proporcionan para la ilustración y son aplicables para anclajes individuales instalados en aplicaciones de mampostería completamente rejuntada.
- Las distancias al borde Ca1 son mayores que o iguales a la distancia a la testa C<sub>minHJ</sub>, la distancia minima a la soga C<sub>min</sub> y la distancia minima a la coronación de la pared C<sub>min,top</sub>
- 3. Los cálculos se han realizado de acuerdo a la ACI 318-14 y AC 01 seccion 3.3.
- 4. Los factores de reducción (Φ) están basados en la AC 01 Sección 3.3.2.9.
- 5. Los valores tabulados son válidos solo para cargas estáticas,.
- 6. Para cálculos que incluyan tracción y cortante combinadas, la interacción de ambas será calculada de acuerdo a la ACI 318-14 sección 17.6.
- 7. Las interpolaciones no pueden utilizarse en los valores tabulados.

#### Resistencias de cálculo a tracción y cortante para MTD-X en mampostería

|                                          | Profundidad<br>nominal del<br>anclaje |                 | Mamposter      |                |                |                      |                |
|------------------------------------------|---------------------------------------|-----------------|----------------|----------------|----------------|----------------------|----------------|
| Diámetro<br>nominal del<br>anclaje (in.) |                                       | Parte inferior  | de la pared    | Parte superio  | or de la pared | Mampostería fisurada |                |
|                                          | h <sub>nom</sub>                      | ΦN <sub>n</sub> | ΦVn            | $\Phi N_n$     | ΦVn            | ΦN <sub>n</sub>      | ΦVn            |
|                                          | (in.)                                 | Tracción (lb.)  | Cortante (lb.) | Tracción (lb.) | Cortante (lb.) | Tracción (lb.)       | Cortante (lb.) |
| 1/4                                      | 1 5/8                                 | 177             | 538            | 177            | 105            |                      |                |
| 3/8                                      | 2.33                                  | 730             | 1.039          | 585            | 365            | 333                  | 1.039          |
| 1/2                                      | 2 33                                  | 621             | 1,464          | 480            | 912            | 253                  | 1,464          |
|                                          | 3,59                                  | 986             | 1,464          | 986            | 912            | 403                  | 1,464          |
| 5/8                                      | 3,23                                  | 1,733           | 2,287          | 1,633          | 892            | 1,194                | 2,287          |
| 3/0                                      | 4,49                                  | 1,963           | 2,287          | 1,667          | 892            | 1,353                | 2,287          |
| 3/4                                      | 3,74                                  | 1,302           | 3,716          | 1,053          | 1,686          | 1,302                | 3,716          |
|                                          | 5,26                                  | 2,522           | 3,716          | 2,522          | 1,686          | 2,522                | 3,716          |

#### Cargas admisibles para MTD-X

El ESR-5412 da información de cálculo para los factores de carga y las resistencias características (LRFD); sin embargo, los valores de carga admisible (ASD) siguen siendo aplicados por los usuarios. La conversión de los valores LRFD a ASD es posible; sin embargo, depende de las proporciones de cargas muertas y vivas. Las cargas muertas son definidas en el "Código de requerimientos estructurales del concreto ACI 318" como "los pesos de los miembros, la estructura soportada y los adjuntos permanentes que probablemente estén presentes en una estructura en servicio".

Las cargas vivas son definidas en la ACI 318-14 como "carga que no se aplica permanentemente a una estructura, pero es probable que ocurra durante la vida útil de la estructura (excluyendo cargas ambientales)". Ejemplos de cargas vivas son las pasarelas peatonales cuando se utilizan y las no permanentes asociadas al uso de la estructura. Los valores de cargas vivas son evaluados en el código de la edificación para distintas condiciones de carga y distintas partes de la estructura.

Para facilitar la conversión de los valores característicos del LRFD a los del ASD, se utiliza un escenario de cargas muertas y vivas para dirigir de forma conservadora la aplicación más común de la siguiente manera: 30% carga muerta; 70% carga viva. El ACI 318-14 Ecuación (5.3.1b) ofrece el factor de conversión de 1,48, el cual se divide en la resistencia característica del LRFD y se multiplica por el factor φ (de acuerdo al tipo de fallo) para determinar una carga equivalente en ASD.

Es responsabilidad del usuario elegir los valores apropiados de ASD basados en los ejemplos de carga mostrados en este documento o cargas muertas alternativas versus cargas vivas que puedan ser aplicables al cálculo específico.

#### Cargas admisibles para MTD-X en mampostería

| Diámetro<br>nominal del<br>anclaje (in.) | Profundidad            |                 | Mamposter      | Manager of the control of |                |                      |                |  |
|------------------------------------------|------------------------|-----------------|----------------|---------------------------|----------------|----------------------|----------------|--|
|                                          | nominal del<br>anclaje | Parte inferior  | de la pared    | Parte inferio             | r de la pared  | Mampostería fisurada |                |  |
|                                          | h <sub>nom</sub>       | ΦN <sub>n</sub> | ΦVn            | ΦN <sub>n</sub>           | ΦVn            | ΦN <sub>n</sub>      | ΦVn            |  |
|                                          | (in.)                  | Tracción (lb.)  | Cortante (lb.) | Tracción (lb.)            | Cortante (lb.) | Tracción (lb.)       | Cortante (lb.) |  |
| 1/4                                      | 1 5/8                  | 120             | 363            | 120                       | 71             |                      |                |  |
| 3/8                                      | 2.33                   | 493             | 702            | 396                       | 247            | 225                  | 396            |  |
| 1/2                                      | 2 33                   | 420             | 989            | 324                       | 616            | 171                  | 989            |  |
|                                          | 3,59                   | 666             | 989            | 666                       | 616            | 272                  | 989            |  |
| F/0                                      | 3,23                   | 1,171           | 1,545          | 1,103                     | 603            | 807                  | 1,545          |  |
| 5/8                                      | 4,49                   | 1,327           | 1,545          | 1,126                     | 603            | 914                  | 1,545          |  |
| 3/4                                      | 3,74                   | 880             | 2,511          | 712                       | 1,139          | 880                  | 2,511          |  |
|                                          | 5,26                   | 1,704           | 2,511          | 1,704                     | 1,139          | 1,704                | 2,511          |  |

<sup>1.</sup> Los valores admisibles de carga se calculan utilizando un factor de conversión, α, tomado de los cálculos de Resistencia.

Ref. FT MTD-X-mx Rev: 15 21/10/25 11 de 11

<sup>2.</sup> Los valores admisibles tabulados se consideran 30% de carga muerta y un 70% de carga instantánea, con una combinación de cargas de 1,2M + 1,6l. La media ponderada de los factores de conversión,  $\alpha = 1,2*(0,3) + 1,6*(0,7) = 1,48$ .